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Aphasia is an acquired impairment in the production or comprehension of language, typically caused by left hemi-
sphere stroke. The subtyping framework used in clinical aphasiology today is based on the Wernicke-Lichtheim
model of aphasia formulated in the late 19th century, which emphasizes the distinction between language
production and comprehension. The current study used a data-driven approach that combined modern statistical,
machine learning, and neuroimaging tools to examine behavioural deficit profiles and their lesion correlates and
predictors in a large cohort of individuals with post-stroke aphasia. First, individuals with aphasia were clustered
based on their behavioural deficit profiles using community detection analysis (CDA) and these clusters were com-
pared with the traditional aphasia subtypes. Random forest classifiers were built to evaluate how well individual
lesion profiles predict cluster membership. The results of the CDA analyses did not align with the traditional
model of aphasia in either behavioural or neuroanatomical patterns. Instead, the results suggested that the pri-
mary distinction in aphasia (after severity) is between phonological and semantic processing rather than between
production and comprehension. Further, lesion-based classification reached 75% accuracy for the CDA-based cate-
gories and only 60% for categories based on the traditional fluent/non-fluent aphasia distinction. The results of
this study provide a data-driven basis for a new approach to classification of post-stroke aphasia subtypes in both
research and clinical settings.

1 Department of Psychology, Drexel University, Philadelphia, PA 19104 USA
2 Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK

Correspondence to: Jon-Frederick Landrigan Ph.D
Drexel University, 3201 Chestnut Street
Philadelphia, PA 19104, USA
E-mail: Jon.Landrigan@gmail.com

Keywords: aphasia; lesion-based diagnosis; language processing; machine learning

Abbreviations: CDA¼ community detection analysis; MNF¼mild, non-fluent, fluent; SMOTE¼ synthetic minority
over sampling technique; WAB¼Western Aphasia Battery

Introduction
Aphasia is an impairment of language production and/or compre-
hension that is a common and severe consequence of stroke.1-3

Aphasia diagnosis continues to follow a 19th century model of the

neural basis of language, the Wernicke-Lichtheim model, which
primarily focuses on three functional aspects of language: fluent
speech production, auditory comprehension, and speech repeti-
tion. A patient’s aphasia subtype diagnosis can affect both treat-
ment (by affecting treatment strategy selection) and research
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because many studies recruit and group participants based on
their diagnosis.4-6

Over the course of more than 100 years of research and clinical
practice based on this framework, there have been numerous cri-
tiques of it and many issues have been identified. One of the pri-
mary issues is that the deficit profiles of individuals with the same
subtype are highly variable, suggesting that the co-occurrence of
symptoms is not adequately captured by the diagnostic frame-
work.6-12 Further, there is poor agreement between diagnostic
instruments13,14: only 27% agreement between the two major
English-language aphasia diagnostic tests, the Western Aphasia
Battery (WAB) and Boston Diagnostic Aphasia Examination
(BDAE).15 Similarly, Crary et al.13 performed a cluster analysis on
the subtests from the BDAE and the WAB and found less than 40%
agreement between their clusters and the subtype diagnoses.

A more recent analysis of 65 left hemisphere stroke cases found
that 26.5% were ‘unclassifiable’ and that there was very poor cor-
respondence between lesion location and aphasia subtype.12 This
is echoed in other recent studies that found that the lesion-deficit
correspondence proposed in the classic models of aphasia is not
well-supported by the data.12,16-18 For example, there have been
cases of global aphasia in the presence of an intact Wernicke’s
area, and fluent aphasia in the presence of anterior lesions.19

Several recent studies have used data-driven approaches to de-
scribe the primary dimensions of post-stroke aphasic deficits and
their lesion correlates.20-24 These studies have identified three pri-
mary dimensions (for a review see Mirman and Thye25): phono-
logical processing (recognition and production of speech sounds),
semantic cognition (conceptual knowledge), and fluency (sen-
tence-level speech planning and production). The current study
similarly used data-driven methods, but leveraged tools and tech-
niques from machine learning to focus on the problem of classify-
ing behavioural deficit profiles and evaluating whether these
classes are predictable from lesion patterns. The current study dif-
fers from prior studies because it attempts to cluster patients
based on their behavioural profiles, whereas those prior studies
performed principal component analysis (PCA) to cluster behav-
ioural measures together to identify the primary dimensions.
Classifying deficit profiles is inherently imperfect because no two
patients have exactly the same profile, but an effective classifica-
tion scheme has substantial utility for both clinical research (e.g.
many treatment studies group patients based on their diagnosis)
and clinical practice (i.e. clinicians use diagnoses as a shorthand to
convey deficit information). In the current study, community de-
tection analysis (CDA) was used to cluster individuals based on
their pattern of language deficits following stroke. Then, a random
forests classifier was built to categorize individuals based solely on
their lesion profiles. Taking this approach allowed us to directly at-
tack the issue of finding a robust classification scheme that can be
utilized in clinical research and practice to classify patients and
identify treatment options to improve their quality of life.

Materials and methods
Behavioural and lesion location data

The initial behavioural data for this study were downloaded
from the Moss Aphasia Psycholinguistics Project Database
(MAPPD) in March 201726 and contained data from 296 partici-
pants and 43 features (i.e. six demographic measures and 37
behavioural/cognitive measures). The dataset contains test
scores from participants who partook in studies at the Moss
Rehabilitation Research Institute (MRRI) beginning in 1991
through the date of download, who had language impairments
following left hemispheric stroke. Participants were between

the ages of 18 and 80 and primarily monolingual English
speakers (<5% reported speaking a second language). Most
participants had chronic aphasia (i.e. >6 months post stroke).
These are retrospective data gathered over 20þ years of re-
search, and the contents of the testing battery evolved and
changed (i.e. tests were added and removed). As a result, some
participants were missing data due to the changing compos-
ition of the test battery. The missing data are a result of evolv-
ing research interests and methods at MRRI and do not reflect
properties participants (other than the year they were tested);
therefore, the data are considered to be missing at random.

Redundant measures (e.g. Sentence Comprehension Lexical
A and Sentence Comprehension Lexical B) were collapsed to a
single score: the mean of the two test scores was used if a par-
ticipant had both; if only a single test score was available, then
that score was used. Subset measures (e.g. Synonymy Triplet
Nouns and Synonymy Triplets Verbs are subsets of Synonymy
Triplets Total) were dropped because they are dependent on
each other; only the total score was used in such cases. The
final dataset contained 20 measures (for a more detailed de-
scription of each test and measure, see Mirman et al.26): WAB
aphasia quotient, Philadelphia Naming Test (PNT) name verifi-
cation (word-to-picture matching), PNT semantic errors, PNT
formal errors, PNT non-word errors, auditory discrimination
(collapsed), synonymy triplets total, rhyme discrimination, im-
mediate serial recall, semantic short term memory span,
Peabody Picture Vocabulary Test, phonological short term
memory span, auditory lexical decision (d’), semantic category
discrimination, Camel and Cactus Test, Pyramids and Palms
Test, non-word repetition (collapsed), sentence comprehension
lexical (collapsed), sentence comprehension reversible (col-
lapsed), Philadelphia Repetition Test accuracy. To control the
amount of missing data further, participants who were missing
more than 60% of the scores were excluded from further analy-
ses (see Supplementary Fig. 1 for the distribution of per cent
missing data). This threshold resulted in 226 participants being
included in the final dataset. See Table 1 for the distribution of
WAB diagnoses, aphasia severity, and chronicity.

After the initial data cleaning, 15.9% of the data were missing.
As complete case analysis can lead to biased estimates and re-
duce statistical power27 we conducted multivariate imputation
by chained equations (MICE) implemented in the mice package
for R (version 2.46.028). MICE is one type of multiple imputation
technique that has emerged as a principled method of handling

Table 1 Overview of participant characteristics in the cluster-
ing analysis

WAB diagnosis n WAB AQ Months post
onset

Anomic 90 87.6 (60.2–97.9) 23.49 (1–290)
Broca’s 58 56.3 (25.2–84.7) 49.57 (2–195)
Conduction 41 72.1 (44.0–84.0) 23.46 (2–170)
Global 1 32.8 10
PCA aetiologya 3 96.8 (95.2–99.3) 24.67 (7–42)
Transcortical motor 2 73.9 (72.2–75.5) 15.50 (4–27)
Transcortical sensory 6 62.1 (53.0–69.9) 52.50 (4–234)
Wernicke’s 25 57.4 (39.3–82.2) 34.52 (1–381)

Values are presented as mean (range).
aPosterior cerebral artery (PCA) aetiology refers to participants who had suffered a

stroke in the posterior cerebral artery. A formal WAB diagnosis was unavailable for

these patients, but they had very mild deficits, approximately consistent with the

anomic subtype.
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missing data in the literature.28,29 In short, the MICE procedure
models each variable with missing value conditional upon other
available data via a series of regression models. Importantly,
MICE incorporates random variation in its computations of the
missing data. The introduction of random variation across mul-
tiple imputations produces multiple plausible values for each
missing data-point, thus restoring the error variance that would
be lost from regression-based single imputations and reducing
the bias from estimating the value based on the other data-
points in the data set.29,30 Therefore, the imputations must be
done multiple times, creating multiple complete datasets.
Analyses must then be performed on each complete dataset and
collapsed, providing a better estimate of the outcome of interest.
(For a full review of multiple imputations see Sinharay et al.31).
Further studies have shown that multiple imputations can re-
duce bias even when the proportion of missing data is large.32

Five complete datasets were constructed using multiple imputa-
tions; these datasets were identical in terms of the number of
participants and measures, but differed in terms of the values
that were imputed. A separate clustering analysis (see next sec-
tion) was applied to each of the datasets and the results were
collapsed post-clustering using majority vote.

Lesion location data were available for 134 of 226 partici-
pants included in the CDA clustering. These data were part of
a larger ongoing project and subsets of these data have been
used in a number of other studies.24,33 The structural scans
were composed of 117 research scans (75 MRI and 42 CT) and
17 clinical scans (five MRI and 12 CT). A technician manually
segmented lesions that were imaged with MRI. These segmen-
tations were then reviewed by an experienced neurologist for
accuracy. Images were first registered to a custom template
constructed from images acquired on the same scanner, then
registered to the Montreal Neurological Institute space
‘Colin27’ volume. For the CT scans, a neurologist drew lesions
onto the Colin27 volume, after rotating (pitch only) the tem-
plate to approximate the slice plane of the patient’s scan.

Analysis methods

Clustering using community detection analysis
CDA was used to identify groups of participants with similar
behavioural deficits. In short, CDA comes from graph theory,
which is a discipline concerned with the study of graphs and
networks. Networks consist of sets of nodes that are connected
by edges. CDA attempts to uncover sets of nodes (i.e. commun-
ities or clusters) that are densely connected to one another but
only sparsely connected to other communities of nodes (for a
review see Fortunato34). CDA has a distinct advantage over
other clustering algorithms, such as k-means and hierarchical
clustering, in that it provides the optimal number of clusters
based on the data, as opposed to the investigator predefining
the number of clusters, selecting the number of clusters
through subjective inference or through post hoc analyses. In a
preliminary analysis a hierarchical clustering analysis was
performed; however, after applying the elbow method and the
average silhouette method, there was no consensus on the op-
timal number of clusters. Further, cluster membership was not
stable across the different imputed data sets: the average en-
tropy h for the hierarchical clustering analysis was 0.81. By
comparison, for the CDA clusters mean h¼0.16 (lower values
indicate more stable clustering results). CDA was developed to
examine the community structure of networks (e.g. social

networks), but has also been recently used to uncover sub-
types of attention deficit hyperactivity disorder.35,36

To apply CDA to the aphasic deficit data, we considered
each participant as a node in the network and participants
with similar deficit profiles were defined as having a connec-
tion between them. First, all scores were normalized and pair-
wise correlations were calculated for each pair of participants
(i.e. correlations were computed using the full set of behav-
ioural measures for each pair of participants). Second, a correl-
ation threshold was applied to the pairwise correlation matrix
to define whether or not two patients were connected. The
threshold was set at the highest value such that there were no
isolated nodes in the network; in other words, so that every
participant node was connected to at least one other partici-
pant node (for specific threshold values see Supplementary
Table 1). Note that because the value of the threshold is depend-
ent on the data and the data were variable due to multiple impu-
tations, the threshold was separately calculated for each of the
imputed data sets and ranged from 0.391 to 0.474. The
Supplementary material also describes results from alternative
network construction strategies. Put simply, if two participants
had strongly correlated scores, then they were linked in the net-
work; on the other hand, if participants had weakly correlated
scores, then they were not linked (Fig. 1). Constructing the net-
work in this manner allowed the CDA to uncover distinct groups
of participants who had highly correlated test scores and there-
fore similar behavioural profiles. The particular CDA algorithm
was the edge-betweenness community detection algorithm,37,38

implemented through functions provided by the iGraph package
available for R (Version 1.1.239). This algorithm operates by first
determining the edge betweenness (i.e. number of shortest
paths that run through an edge) of all edges in the network and
removes the edge with the greatest edge betweenness value.
The algorithm runs until all edges have been removed from the
network. Cluster membership is determined by separating
nodes based on the maximum modularity value obtained while
removing edges. The modularity value is considered to be a
goodness of cluster metric that compares the number of edges
within a given cluster to the number of edges within a cluster if
connectivity of the network were completely random while pre-
serving the node degree distribution.40,41

CDA was applied to each of the five imputed data sets separ-
ately and the results of the individual CDAs were then combined
by aligning the clusters across CDAs and using majority vote to
determine overall cluster assignment for each participant. That
is, if a participant was placed into the same cluster in three or
more of the analyses, then that participant was assigned to that
cluster. If a participant was not placed into the same cluster in
at least three of five CDAs, then they were considered non-clus-
tered. To facilitate qualitative characterization of the differences
in pattern of deficits between clusters, permutation-based
ANOVAs were run for each of the measures because data were
non-normally distributed and there were unequal variances
across measures (permuco package for R version 1.0.242). For
measures with statistically significant differences between clus-
ters, post hoc pair-wise comparisons were made using a non-
parametric permutation-based t-test due to the violation of t-
test assumptions (DAAG package for R version 1.22.143).

Lesion location differences
For each cluster, a comparison of lesion location was carried
out using a v2 test in each voxel (i.e. voxel-wise 2�2
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contingency table of whether the voxel was lesioned or not
and whether the participant belonged to that cluster or not). In
this approach, each cluster was compared to all the remaining
clusters in order to identify neural regions where damage was
specifically associated with membership in that individual
cluster. To reduce mislocalization of effects, only voxels where
at least 10% of the patients had lesions were included.
Although this inclusion threshold makes it impossible to de-
tect effects in regions where only a few participants have
lesions, it prevents overfitting brain regions where very little
lesion data is available.44 The continuous family wise error
rate (cFWER) correction method was used to control false posi-
tives due to multiple comparisons.45 The cFWER is a general-
ization of standard permutation-based FWER correction that
allows specifying the upper limit of expected number of false
positive voxels at some value >1 [because a single false posi-
tive voxel rarely, if ever, affects interpretation of a voxel-based
lesion-symptom mapping (VLSM) result]. For the present VLSM
analyses, the upper limit was set at v¼100 (i.e. no more than
100 false positive voxels would be present in the results).
Analyses were carried out using ANTsR (Version 0.7.246).

Lesion-based diagnosis
As a final test of this data-driven classification of individuals
with aphasia, a prediction model was developed to evaluate
whether individual lesion patterns could predict behavioural
cluster membership. First, the lesion map for each participant

(n¼134) was parcellated according to the cortical regions iden-
tified in the HCP atlas47 and the white matter tracts identified
in the ICBM-DTI white matter tractography atlas from FSL,48-50

resulting in 150 total parcels within the lesion coverage of this
participant sample. The per cent damage in each parcel was
calculated for each participant and combined into a per cent
damage vector. Per cent damage vectors were then binarized:
if 50% or more voxels were damaged in a given region for a par-
ticipant, then it was considered ‘damaged’, otherwise it was
not. To reduce the dimensionality of the feature space (i.e.
number of included regions) two sequential steps were taken.
First, regions were only included if at least one participant had
damage in a given region post binarization (n¼81). Second,
feature dimensions were further reduced by fitting initial ran-
dom forest classifiers on the features from step 1 and selecting
the features with non-trivial importance (i.e. gini feature im-
portance > 0.005), resulting in a subset of �50 features. While
other approaches were considered for feature selection and
modelling (i.e. non-binarized features and varying the gini im-
portance thresholds); the reported approach appeared to pro-
duce the best and most robust performance. Feature reduction
steps such as these are standard in machine learning when
dealing with a large number of predictors.51 Reducing the
number of predictors was especially important in the current
context because the number of predictors (lesion features) was
greater than the number observations (i.e. there were 180 ini-
tial features and 134 scans to train and test the model).

Figure 1 CDA steps. (A) Correlation matrix containing all pairwise correlations between participants (white ¼ low correlation, red ¼ high correlation).
(B) Adjacency matrix based on thresholded correlation matrix (black dots represent links). (C) Network produced from the adjacency matrix. (D)
Results of CDA with colours denoting cluster membership.
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Leaving all features in the model could have led to overfit-
ting.52,53 These vectors were then used as the feature vector in-
put for a random forest classifier, which was trained to learn
the appropriate CDA cluster for each participant. A schematic
of this analysis pipeline is shown in Fig. 2.

To compare with the traditional aphasia subtyping system,
classifiers were trained in the same manner as above, but
using WAB diagnosis as the outcome instead of CDA cluster.
For the number of observations in each class (i.e. CDA clusters
and WAB diagnoses) see Table 2. A final classifier was devel-
oped for a WAB-based three-group classification of mild, flu-
ent, and non-fluent (MNF) groups. The mild group consisted of
participants with anomic aphasia (n¼54) and those with pos-
terior cerebral artery aetiology (n¼3), the fluent group con-
sisted of 37 participants with fluent aphasia subtypes
(conduction n¼24, Wernicke’s n¼11, and transcortical sen-
sory n¼2), and the non-fluent group consisted of 40 partici-
pants with non-fluent aphasia subtypes (Broca’s n¼37, global
n¼1, and transcortical motor n¼2).

For a first set of analyses, the classifiers were trained on the
base set of observations and the reduced feature set. In a se-
cond set of analyses, the datasets were up-sampled using the

synthetic minority oversampling technique (SMOTE54) in order
to balance the number of training observations in each class.
This was used for the CDA-based and WAB-based MNF classes
to balance the class sizes and prevent the models from being
biased towards the majority class during training. More specif-
ically, during training, machine learning models are designed
to maximize the classification accuracy—the proportion of
cases classified correctly by the model. Unbalanced outcomes
can lead to a biased model because the model may achieve a
high classification accuracy during training by simply classify-
ing everything as the majority class.55-57 One important advan-
tage of SMOTE is that the artificial samples are unique and are
not repetitions of original observations, so classification accur-
acy is not inflated by repetition or leakage from training to test
sets. In addition, the up-sampled data provide a more bal-
anced and robust testing set that is not biased toward the ma-
jority class (e.g. Cluster 3 only had 26 samples to be trained
and tested, so without up-sampling, a typical test set only con-
tained about two samples per fold). Using SMOTE on the full
set of WAB diagnoses was not viable because some classes
were far too small (there was only a single participant diag-
nosed with global aphasia, and only two each with transcortial
motor and transcortical sensory aphasia). The small number
of observations in these classes are insufficient for the SMOTE
algorithm to create synthetic observations because the syn-
thetic observations are based on averages from the true obser-
vations. All classifiers were assessed by running 10-fold cross
validation 100 times and taking the mean accuracy across
runs. Mean chance performance was assessed by permuting
the true labels 20 times and running 10-fold cross validation
on each permutation. All modelling was carried out in python
(Version 3.6.6). SMOTE was performed using functions pro-
vided by the imblearn package (Version 0.3.3). Random forest
classifiers were developed using functions provided by the sci-
kit-learn package (Version 0.19.1).

Data availability

Anonymized behavioural data are available at www.mappd.
org (requires free account registration and agreement to abide
by terms of data use). Lesion data are available from Daniel
Mirman (dan@danmirman.org) upon reasonable request and
subject to approval by the appropriate regulatory committees
and officials.

Figure 2 Schematic diagram of lesion-based diagnosis. Beginning with the participant’s individual lesion map (left), per cent damage is calculated in
the regions identified in the cortical and white matter tract atlases and converted into a per cent damage vector. The per cent damage vector is then
binarized and used as the input feature vector for the random forest and the output is one of the clusters identified by CDA.

Table 2 Number of participants in each class for the lesion-
based diagnosis analyses

Classifier type Class Number of
observations

CDA cluster 1 74
2 34
3 26

WAB diagnosis Anomic 54
Broca’s 37
Conduction 24
Global 1
PCA aetiology 3
Transcortical motor 2
Transcortical sensory 2
Wernicke’s 11

MNF Mild 57
Fluent 37
Non-fluent 40

PCA ¼ posterior cerebral artery.
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Table 3 Mean test performance by CDA cluster

Majority vote cluster 1 2 3 1 versus 2 1 versus 3 2 ver-
sus 3

n 116 55 50 – – –
WAB Aphasia Quotient, standard score 85.6 (9.1) 58.3 (17.7) 61.6 (11.8) <0.001 <0.001 0.297
PNT Name Verification, % correct 93.7 (5.3) 76.7 (18.7) 69.9 (23) <0.001 <0.001 0.127
Semantic errors, % 5.7 (3.6) 5.7 (4.5) 12.7 (5.3) 0.938 <0.001 <0.001
Formal errors, % 2.6 (3.1) 19.2 (10.1) 7.7 (5.4) <0.001 <0.001 <0.001
Non-word errors, % 8.5 (7.4) 41.7 (20.9) 13.1 (10.9) <0.001 0.004 <0.001
Auditory discrimination, % correct 89.8 (6.5) 78.9 (11.4) 82.2 (9.4) <0.001 <0.001 0.109
Synonymy Triplets Total, % correct 85.2 (10.4) 74.1 (18.4) 59.6 (13.6) <0.001 <0.001 <0.001
Rhyme discrimination, % correct 94.8 (6.6) 80.6 (13.7) 85.9 (14.5) <0.001 <0.001 0.144
Short-term memory ISR, span 3.5 (0.8) 1.6 (0.7) 2.3 (1) <0.001 <0.001 0.003
Peabody Picture Vocabulary Test, standard score 86.6 (12.1) 72.6 (19.7) 59.3 (17.4) <0.001 <0.001 0.005
Semantic short-term memory, span 2.9 (1.1) 1.6 (1) 0.7 (0.4) <0.001 <0.001 <0.001
Phonological short-term memory, span 3.9 (1.7) 1.7 (1.4) 1.9 (1.1) <0.001 <0.001 0.702
Auditory Lexical Decision, d0 2.6 (0.9) 1.9 (0.8) 2.4 (0.7) <0.001 0.138 0.007
Semantic Category Discrimination, % correct 89.1 (6.7) 77.2 (13.4) 67.8 (11.8) <0.001 <0.001 0.004
Camel and Cactus Test, % correct 80.2 (8.6) 72.4 (12.5) 52.9 (15.2) <0.001 <0.001 <0.001
Pyramids and Palms Test, % correct 91.1 (6.1) 88.3 (8.8) 77.1 (12.5) 0.019 <0.001 <0.001
Non-word repetition, % correct 60 (20.3) 21.8 (18.4) 50.8 (21.3) <0.001 0.023 <0.001
Sentence Comprehension: Lexical, % correct 96.3 (5.6) 88.2 (11) 82.8 (12.1) <0.001 <0.001 0.025
Sentence Comprehension: Reversible, % correct 80.3 (14) 64 (14.9) 56.8 (11.5) <0.001 <0.001 0.014
Philadelphia Repetition Test, % correct 93.2 (5.8) 62.8 (20.5) 89.5 (9.5) <0.001 0.003 <0.001
WAB aphasia subtype, n

Anomic 78 2 9
Broca’s 18 16 22
Conduction 15 22 2
Global 0 0 1
PCA aetiology 3 0 0
Transcortical motor 1 0 1
Transcortical sensory 0 1 5
Wernicke’s 1 14 10

The right-most columns show P-values for pair-wise comparisons between clusters. Values are presented as mean (SD). ISR ¼ Immediate Serial Recall; PCA ¼ posterior

cerebral artery.

Figure 3 Standardized test performance by CDA clusters.
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Results
Clustering using community detection analysis

The primary CDA resulted in three main clusters containing 97.8%
of the participants. There were 116 participants in cluster 1, 55 par-
ticipants in cluster 2, and 50 participants in cluster 3. The remain-
ing five participants were deemed non-clustered because they
were not placed in the same cluster in at least three of the analy-
ses. Table 3 shows the mean performance for each cluster on each
test or measure, and Fig. 3 shows the mean standardized test per-
formance on each measure. The non-parametric permutation-
based ANOVAs found statistically significant differences on every
measure and pairwise comparisons revealed a coherent pattern of
differences between pairs of clusters. Participants in cluster 1 typ-
ically had milder aphasia (mean WAB AQ 85.57, more than 20
points higher than the other two clusters, both P< 0.001) and gen-
erally scored better on all of the measures than the participants in
clusters 2 and 3. The differences between cluster 1 and 2 were stat-
istically significant for each measure and the differences between
cluster 1 and 3 were statistically significant for all but two meas-
ures (Table 3). Most participants in cluster 1 had been diagnosed
with anomic aphasia (n¼ 78), but this cluster also contained a sub-
stantial portion of the participants with Broca’s (n¼ 18) and con-
duction aphasia (n¼ 15). Participants in clusters 2 and 3 had
similar overall aphasia severity (WAB AQ means: 58.31 and 61.63,
respectively; P¼ 0.297); however, their profiles differed in regard to
the other measures. Participants in cluster 2 typically performed
worse on phonological measures. For example, they had higher
rates of formal errors (cluster 2 mean ¼ 19.2, cluster 3 mean ¼ 7.7,
P< 0.001) and non-word errors (cluster 2 mean ¼ 41.7, cluster 3
mean ¼ 13.1, P< 0.001) in picture naming, poor word repetition
(cluster 2 mean ¼ 62.8, cluster 3 mean ¼ 89.5, P< 0.001), and very
poor non-word repetition (cluster 2 mean ¼ 21.8, cluster 3 mean ¼
50.8, P< 0.001), but their performance on semantic tasks was rela-
tively preserved. Participants in cluster 3 performed relatively well
on phonological measures but performed poorly on semantic
measures. For example, they had high rates of semantic errors in
picture naming (cluster 2 mean ¼ 5.7, cluster 3 mean ¼ 12.7,
P< 0.001) and low scores on the Camels and Cactus Test (cluster 2
mean ¼ 72.4, cluster 3 mean ¼ 52.9, P< 0.001) and synonym judge-
ments (cluster 2 mean ¼ 74.1, cluster 3 mean ¼ 59.6, P< 0.001).
They also performed more poorly on sentence comprehension
(Lexical: cluster 2 mean ¼ 88.2, cluster 3 mean ¼ 82.8, P< 0.05;
Reversible: cluster 2 mean ¼ 64.0, cluster 3 mean ¼ 56.8, P< 0.05).
Although sentence comprehension relies on both phonological
and semantic processing, as well as syntactic processes, the over-
arching deficit profile of patients in cluster 3 suggests that the se-
mantic demands may be more prominent in this task. Both
clusters 2 and 3 contained substantial numbers of participants
with Broca’s aphasia (n¼ 16 and n¼ 22, respectively) and
Wernicke’s aphasia (n¼ 14 and n¼ 10, respectively). Consistent
with the phonological-semantic divide between clusters 2 and 3,
the remaining participants with Conduction aphasia (those who
were not in cluster 1) tended to be in cluster 2 (n¼ 22) rather than
cluster 3 (n¼ 2), while the participants with transcortical sensory
aphasia tended to be in cluster 3 (n¼ 5) rather than cluster 2 (n¼ 1).
See Table 3 for the full breakdown of WAB diagnoses per CDA
cluster.

A subsequent analysis was run to determine if cluster 1 could
be broken down further. The analysis followed the same CDA pro-
cedure as described above. The CDA revealed a subcluster of 31
patients within cluster 1. This cluster of participants had lower
WAB AQ scores (mean ¼ 79.6) and more severe phonological
impairments (e.g. higher rates of formal and non-word errors on
the PNT and poorer performance on the Philadelphia Repetition

Test) relative to the rest of the patients in cluster 1. However, given
that only one subcluster was identified and the rest of the partici-
pants were deemed unclassified or as singlet clusters, this sub-
cluster was not included in further analyses.

A series of follow-up analyses were conducted to check that
the cluster structure reported above was not an artefact of particu-
lar analysis choices. A different CDA algorithm [order statistics lo-
calization optimization method (OSLOM)58] produced qualitatively
the same three-cluster structure. These results were also repli-
cated using Spearman correlations instead of Pearson correlations,
running a louvain CDA using on weighted networks as opposed to
binarized networks, and under moderate increases or decreases
(60.05, 60.10, 60.20) in the correlation threshold that was used to
determine whether two participant nodes were linked or not. The
clustering analysis was also repeated without participants who
were missing data (i.e. no imputations were performed). The over-
all cluster structure and behavioural deficit profiles of the clusters
the same, and 93% of participants were placed in the same cluster
as they were in the main analysis, suggesting the imputations did
not bias the results. Finally, a support vector machine classifier
(implemented with the e1071 package for R, Version 1.6–859) was
used to evaluate how well the behavioural assessment scores pre-
dict cluster membership (i.e. support vector machines were
trained to predict cluster membership or WAB diagnoses using the
behavioural test scores). The 10-fold cross-validation classification
accuracy was 94.0% (chance classification accuracy estimated by
permutation was 43.0%), indicating that the cluster structure and
membership robustly corresponded to individual participants’ as-
sessment scores (for more details about these robustness checks
see the Supplementary material).

Lesion location differences

Participants in cluster 1 typically had the smallest lesions [mean ¼
69.39 cm3, standard deviation (SD) ¼ 61.12 cm3], participants in
cluster 3 had the largest lesions (mean ¼ 167.64 cm3, SD ¼
90.01 cm3) and those in cluster 2 were intermediate (mean ¼
117.08 cm3, SD ¼ 88.11 cm3). Lesion coverage for the full sample is
shown in Fig. 4, top row. Comparisons of lesion locations revealed
that cluster 1 was associated with damage to the core perisylvian
portion of the middle cerebral artery distribution, primarily con-
sisting of the inferior parietal lobe (including the angular gyrus,
supramarginal gyrus, and postcentral gyrus) and the superior tem-
poral gyrus, extending to the superior temporal pole and into the
middle temporal gyrus (Fig. 4, second row). That is, cluster 1 mem-
bership was associated with relatively smaller lesions in the left
perisylvian regions typically associated with post-stroke aphasia.
Cluster 2 was primarily associated with damage to parietal areas
and more specifically with damage to the supramarginal gyrus
extending anteriorly into the postcentral gyrus (Fig. 4, third row).
Finally, cluster 3 was associated with damage to frontal areas,
including the precentral gyrus, inferior frontal gyrus pars opercula-
ris and pars triangularis, the insula, and extending sub-cortically
into the putamen and globus pallidus (Fig. 4, bottom row). For the
number of above threshold voxels in each region by cluster see
Supplementary Table 2. To rule out artefacts due to inclusion of 22
participants with subchronic aphasia (<6 months post-stroke),
additional VLSM comparisons excluding these participants were
conducted. Because of reduced statistical power, the results
included fewer above threshold voxels, but the overall pattern of
results remained largely the same. See Supplementary Table 3 for
details. Although the neuroimaging and behavioural testing were
conducted at approximately the same time, providing a valid
snapshot of their lesion-symptom relationship chronicity can
have a large impact on both cognitive performance and lesion
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pattern, so a subsequent analysis was run excluding patients less
than 6 months post stroke. Importantly while the number of above
threshold voxels was slightly reduced, the overall patterns
remained unchanged (Supplementary Table 3).

Lesion-based diagnosis

Lesion-based classification accuracy was highest for the CDA clus-
ters and lowest for the WAB aphasia subtype diagnoses. Not sur-
prisingly, the classifier performed better on the three-group WAB
diagnosis (MNF) than on the full set of WAB diagnoses, but even
this three-group WAB classification accuracy was substantially
lower than its performance on the CDA clusters (Table 4). For both
the CDA clusters and the three-group WAB diagnoses, using
SMOTE to equate class sizes substantially improved performance.
The overall highest mean lesion-based classification accuracy was
for the SMOTE CDA clusters dataset, at 76.9% (chance performance
estimated by permutation ¼ 33.9%). The most direct WAB com-
parison was the SMOTE three-group WAB diagnoses, which

produced slightly lower classification accuracy, at 64.1% (chance ¼
34.6%).

Without SMOTE, lesion-based classification accuracy was ap-
proximately equal for CDA clusters (59.6%) and three-group WAB
diagnosis (55.9%), and somewhat lower for the full range of WAB
diagnoses (49.3%). The base MNF and WAB classifiers had larger
performance difference from chance (19.1% and 16.9%, respective-
ly) than the CDA classifier did (12.2%) because, without SMOTE,
chance performance was higher for CDA clusters. This is because
unbalanced classes make simple probability matching a more ef-
fective strategy (CDA clusters were more unbalanced: the largest
CDA cluster was 55% of the participants, but the largest MNF clus-
ter was 43% of participants). The chance performance difference
disappeared when cluster size was equated using SMOTE and the
SMOTE CDA classifier substantially outperformed the MNF classi-
fier relative to chance performance (i.e. 43.0% above chance versus
29.5% above chance). Statistical comparisons of the classifier per-
formances were carried out using a logistic regression (i.e. out-
come was correct/incorrect with model type as the predictor). All
pairwise comparisons were significant at P< 0.0001 (Table 4).

Figure 4 Lesion location patterns for CDA clusters. Top row: Lesion coverage, colour corresponds to proportion of sample with damage in each voxel,
ranging from 0.1 (blue, minimum for inclusion in these analyses) to 0.5 (red). Rows 2–4: Lesion location comparison results for each cluster. Regions in
the green-to-red spectrum survived correction for multiple comparisons; regions in blue-to-purple are below that threshold. For all rows, from left to
right: coronal slices at y¼150, 120 and 90 and sagittal slices at x¼ 45, 52 and 60, respectively.

Table 4 Pairwise comparisons of lesion-based diagnosis models

Outcome CDA WAB MNF CDA versus WAB CDA versus MNF MNF versus
WAB

Base 59.6 (2.6) 49.3 (2.4) 55.9 (2.1) <0.0001 <0.0001 <0.0001
Base chance 47.4 (3.5) 32.4 (5.2) 36.8 (5.9) – – –
SMOTE 76.9 (1.5) – 64.1 (1.7) – <0.0001 –
SMOTE chance 33.9 (4.5) – 34.6 (4.0) – – –

For model fits see Supplementary Table 4.
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Discussion
The present study took a data-driven approach to identifying clus-
ters of individuals with post-stroke aphasia who have similar def-
icit profiles. To identify these clusters, we applied CDA to a large
dataset of 20 psycholinguistic measures from 226 participants
with aphasia. The CDA revealed three distinct clusters. Cluster 1
consisted of individuals who generally had milder deficits as indi-
cated by higher WAB AQ scores and better performance on all as-
sessment measures. Individuals in clusters 2 and 3 had similar
WAB AQ severity scores, but different deficit profiles. Individuals
in cluster 2 typically performed worse on measures of phonologic-
al abilities, indicative of a phonological processing deficit, and
individuals in cluster 3 typically performed worse on measures of
semantic abilities, indicative of a semantic cognition deficit. This
clustering was substantially different from the traditional aphasia
subtypes as defined by the WAB (Table 3): individuals with Broca’s
aphasia were nearly evenly distributed across the three clusters,
individuals with conduction aphasia were approximately evenly
divided between clusters 1 and 2, individuals with Wernicke’s
aphasia were approximately evenly divided between clusters 2
and 3. That is, CDA clustered individuals according to a distinction
between phonological and semantic deficits that was nearly or-
thogonal to the traditional aphasia subtypes. The main point of
agreement was that both CDA and the WAB diagnostic framework
identified a relatively large group of individuals with mild aphasia
(cluster 1 in CDA, anomic aphasia in WAB).

Lesion location comparisons revealed brain regions where
damage was uniquely associated with each of the CDA clusters.
Cluster 1 was generally associated with smaller lesions and dam-
age to left perisylvian portions of the middle cerebral artery terri-
tory (inferior parietal and superior temporal areas). Smaller lesions
in the core of the MCA territory is consistent with the comparative-
ly mild deficit profile of this cluster. Cluster 2 was primarily associ-
ated with damage to the supramarginal gyrus extending anteriorly
into the postcentral gyrus. These regions comprise the dorsal
speech production system,21,24,60 consistent with this cluster’s
prominent phonological deficits, which were particularly pro-
nounced in speech production tasks. Cluster 3 was associated with
damage to frontal regions, converging with other findings suggest-
ing that, in post-stroke aphasia, broad semantic deficits across ver-
bal and non-verbal tasks arise from impaired semantic control
systems that are needed to select the context- and task-relevant
semantic knowledge.61,62 It was not the purpose of these compari-
sons to determine the neural correlates of phonological and se-
mantic deficits, which have been investigated extensively and
more effectively in prior studies. Rather, these neural analyses
provide converging evidence that the CDA-based patient clusters
reflect distinct mild, phonological, and semantic deficits, both be-
haviourally and neuroanatomically. A secondary goal was to pro-
vide a preliminary test of whether lesion-based diagnosis would
be viable, which was then tested using random forests classifiers.
In other words the overall purpose of the present study was a
data-driven approach to aphasia classification, so it was con-
cerned with the lesion location ! cluster analysis, which was
implemented by random forests classifiers, rather than cluster !
lesion location analysis, as would be implemented by lesion symp-
tom mapping (LSM) approaches. Such LSM analyses are a potential
avenue for future research and would benefit from multivariate
and/or connectome lesion symptom mapping methods, which are
better able to detect distributed networks of regions associated
with particular deficits.23,63-66

The random forest classifier was relatively successful in
categorizing individuals into their CDA clusters based solely on
structural information about their lesion locations, indicating
strong correspondence between lesion location and cluster

membership. Lesion-based diagnosis is an important and difficult
challenge.67 It is important for clinical research and practice be-
cause accurate lesion-based predictions of language deficits could
provide valuable information for guiding selection of personalized
treatment strategies. It is challenging because lesion patterns are
structured by the cerebral vasculature, not by functional systems,
and because group-level lesion-symptom associations are highly
variable at the individual level. Data-driven discovery of lesion-
symptom associations and testing predictive inference (e.g. our
random forests classifier) provide a way to improve lesion-based
diagnosis.68 In the current study, lesion location comparisons sug-
gested that the deficit clusters had distinct lesion patterns and the
random forests classifiers showed that the lesion patterns were
distinct enough to be predictive of deficit cluster. Further, the cur-
rent study shows that lesion-based prediction accuracy depends,
in part, on what deficit is being predicted: data-driven deficit cate-
gories (e.g. those produced by CDA) may be more predictable as
suggested by the overall higher accuracy of the CDA classifiers. It
should be noted that classifier performance is strongly influenced
by the distribution of class labels. Up-sampling small classes to
balance class sizes gives the classifier more opportunities to learn
predictors for the small classes and reduces chance performance
(because just using the class label distribution is less effective).
The base CDA classifier performed better than the base WAB and
MNF classifiers on raw accuracy, but not relative to chance be-
cause the CDA clusters were more unbalanced. When SMOTE was
used to balance the class sizes, the CDA classifier substantially
outperformed the MNF classifier, both in terms of raw accuracy
and relative to chance performance (which was approximately
equal for CDA and MNF once the class sizes were balanced).

The finding that deficit clusters coalesced around phonological
and semantic systems converges with other recent data-driven
studies that combined principal components analysis with lesion-
symptom mapping (for a review see Mirman and Thye25). These
studies also identified phonological and semantic systems as core
deficit dimensions in post-stroke aphasia, and fluency deficits
(impaired sentence- or utterance-level speech production) were
the next most consistent deficit dimension. Our CDA was not able
to capture fluency deficits because the dataset did not include any
measures of sentence-level or utterance-level fluency. It is pos-
sible that there is another deficit cluster, one characterized by sen-
tence-level production fluency deficits, that was missed by our
CDA. It seems unlikely that this cluster would substantially re-
organize the observed phonological and semantic clusters because
our random forest lesion-based classification accuracy was sub-
stantially higher for the CDA clusters than for a WAB-based fluent/
non-fluent distinction. That is, non-fluency seems more likely to
be an additional deficit cluster rather than the core deficit dimen-
sion. Critically, a key novel contribution of the current study is the
categorical clustering of patients rather than graded degrees of im-
pairment produced by the posterior cerebral artery. This is import-
ant for clinical translation because clinical contexts often call for
simple, categorical syndrome labels to aid in the development and
selection of treatment strategies for patients with aphasia.

The current study builds on and converges with other recent
studies that not only provide complimentary information to WAB
data, but also potentially point to a ‘primary systems’ approach in
the study and classification of aphasia.12,24,69 Whereas the classic
models of aphasia define the primary distinction as between pro-
duction and comprehension deficits (canonically between Broca’s
and Wernicke’s aphasia), the present results and other recent
data-driven studies suggest that, after severity, the primary dis-
tinction is between semantic and phonological processing. This
distinction has several advantages over the classic model. First, it
grounds aphasia in core cognitive systems as opposed to functions
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that arise from interactions of multiple cognitive systems (e.g. spo-
ken language production requires phonological-articulatory proc-
esses, lexical-semantic processes, as well as sentence planning
and narrative monitoring processes). This fits with a more general
trend in cognitive neuropsychology to emphasize ‘primary sys-
tems’ as the basis of neurocognitive deficits.70 Better alignment
with primary systems may explain why the CDA clusters were
more robust and predictable from lesion patterns. This study pro-
vides a classification framework, but additional work is required to
develop behavioural classification instruments—tests that could
be administered in clinical settings to provide reliable classifica-
tion data.

Second, many current therapy strategies directly target the
semantic system, such as semantic feature analysis,71,72 or the
phonological system, such as phonological or orthographic cue-
ing73-75 or phonomotor therapy.76 Clinical research on such thera-
pies would benefit from being able to classify participants as
‘semantic variant’ or ‘phonological variant’ in order to determine
which individuals benefit the most from the therapy, to uncover
the therapeutic mechanism of action, and to guide clinical deci-
sions about personalized treatment selection.

Finally, the success of the random forests classifier suggests
that a classifier based solely on lesion structure could be used in
clinical settings, where MRI and CT scans are standard tools used
to assess damage post-stroke. The prediction accuracy is likely to
be improved with the addition of more sophisticated neuroimag-
ing data such as functional connectivity77; however, many stroke
survivors are unable or unwilling to undergo such scanning proto-
cols because of contraindications (e.g. metal in their bodies), claus-
trophobia, and financial or other practical constraints. Therefore, a
classifier based only on structural information could be extremely
useful to clinicians if it can provide reliable diagnostic information.
A critical next step is to refine the classifier’s performance further
and evaluate it on a larger sample of patients with a broader range
of cognitive-linguistic assessments. The current classifiers were
trained and tested on a relatively small sample in comparison to
most machine learning development and in part relied on artificial
samples to help it correctly identify patients from the minority
classes, therefore a larger sample would help to test its true ro-
bustness in classifying real patients.

The results of this study and others20,24,25,78 suggest that data-
driven diagnostic tools and assessments centred around semantic
and phonological systems could provide valuable information that
is different from the current standard tools (e.g. WAB diagnostic
tools) for both the study and classification of post-stroke aphasia. In
future research it would be useful to include measures of fluency
and executive functions. Moreover, these results demonstrate the
usefulness of applying machine learning and data-driven techni-
ques in the study of aphasia. Increased data sharing and cooperation
between investigators and clinicians provides new opportunities to
understand neurological impairments better and to improve the
outlook for individuals with post-stroke aphasia.
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