
R Cheat Sheet
by Dan Mirman, Drexel University, 2013 (v2.0). For more R Cheat
Sheets see http://devcheatsheet.com/tag/r/.

Getting help
?topic documentation on topic
??topic search the help system
apropos("topic") the names of all objects in the search list

matching the regular expression “topic”
ls() show objects in the search path; specify pat="pat" to

search on a pattern
ls.str() str() for each variable in the search path

Input and Output
dir() show files in the current directory
getwd(), setwd() get and set working directory
load() load the datasets written with save
require(x), library(x) load add-on packages
read.table(file) reads a file in table format and creates a

data frame from it; the default separator sep="" is any
whitespace, use sep=”\t” for tab-delimited files, sep=”,”
for comma-delimited, etc.; use header=TRUE to read the
first line as a header of column names; character vectors are
converted to factors by default, use as.is=TRUE to override
this; use comment.char="" to prevent "#" from being
interpreted as a comment; use skip=n to skip n lines before
reading data; see the help for options on row naming, NA
treatment, and others

read.csv(file), read.delim(file) versions of
read.table with convenient defaults for comma-separated
and tab-delimited files.

save(x, y, z,… file=”filename”) saves the objects
x,y,z… in a R-format file called filename

save.image(file) saves all objects including loaded
packages

write.table(x, file="", row.names=TRUE,
quote=TRUE, sep=" ", eol = "\n", na = "NA",
append = FALSE) prints x after converting to a data
frame; if quote=TRUE, character or factor columns are
surrounded by quotes ("); sep is the field separator; eol is
the end-of-line separator; na is the string for missing values;
prints row names unless row.names=FALSE; will overwrite
an existing file unless append=TRUE.

Indexing
x[i] i-th element; can be a vector of element indices; if i is a
logical vector, select all elements where i is TRUE
x[-i] all but the i-th element(s)
x["name"] element named "name"
x$name “name” column (or variable) in data frame x

Logic
TRUE, FALSE
==, >, <, <=, >= comparison operators; == can be used

for strings and factors

! negation; use != for not-equal-to
&, | and, or
x %in% y set membership: logical value for each element in x

evaluating whether it matches any of the elements in set y.

Data Creation
<- assignment operator; use = only for arguments in a

function call
c(...) generic function to combine arguments; default result

is a vector
from:to generates a sequence; “:” has operator priority so
1:4 + 1 is “2,3,4,5”

seq(from,to) generates a sequence; use by=x to increment
by x; use length.out=x to make a sequence of length x.

rep(x,n) replicate object x, n times; rep(c(1,2,3),2) is
1 2 3 1 2 3; rep(c(1:3),each=2)is 1 1 2 2 3 3

data.frame(...) create a data frame of the named or
unnamed arguments; shorter vectors are recycled to the length
of the longest; ex: data.frame(v=1:4,
ch=c("a","B","c","d"), n=10)

Data Examination
summary(x) returns a summary of x; will return column

properties for a data.frame, test result summary for
statistical tests, etc.

print(a, ...) prints its arguments; can have different
methods for different objects, including customizing output

head(x), tail(x) return the first or last elements in x;
use head(x,n) to get the first n elements

str(a) display the internal structure of an R object
levels(x) returns the levels of factor x; to rename the

levels use levels(x) <- c(“A”,”B”,...)
length(x) number of elements in x
dim(x) retrieve or set the dimension of an object;
nrow(x), ncol(x) number of rows or columns; NROW(x),
NCOL(x) are the same but treat the vector as a one row or
column matrix

max(x), min(x) returns the greatest or smallest element in
x; use which.max(x) or which.min(x) to get the
index of the greatest or smallest element of x.

which(x == a) returns a vector of the indices of x where the
comparison operation is TRUE, e.g., the values of i for which
x[i] == a

is.na(x), is.null(x), is.data.frame(x)... test
for type; use methods(is)for a complete list

Data Manipulation
rbind(...)combine arguments by rows, i.e., stack vertically
cbind(...)combine arguments by columns, i.e., stack

horizontally
merge(a,b) merge two data frames by common columns or

row names; use by.x and by.y to specify common columns
rev(x) reverses the elements of x
unique(x) if x is a vector or a data frame, returns a similar

object but with the duplicate elements excluded

subset(x, criteria) returns the subset of x where
criteria are TRUE; useful for selecting rows (observations), e.g.,
subset(x, time > 0)will return all elements of x where
x$time is greater than 0; or selecting columns, e.g.,
subset(x, select=c(time, value)) will return just
the time and value columns of x; subset(x, select
= -junk)will drop the junk column of x.

as.numeric(x), as.factor(x)... variable
coercion/conversion; use methods(as) for full list

t(x) transpose
quantile(x, probs=seq(0, 1, by=1/3)) find the

break points that divide x into the specified quantiles (e.g.,
tertiles)

cut(x, breaks=b, labels=c(...)) convert numeric
vector x into a factor using breakpoints b and specified factor
level labels

replace(x, list, y) replace the listed values in x with
the values in y; remember to assign the result

sample(x, size) takes a sample of the specified size from
the elements of x; default is without replacement, use
replace=T to override

Strings
paste(...) concatenate vectors after converting to

character; default separator is a single space, to override use
sep=

substr(x,start,stop) substrings in a character vector;
can also assign: substr(x, start, stop) <- value

strsplit(x,split) split x according to the substring
split; ex: strsplit(x, “-”) will divide a string x into
multiple strings based on locations of -

grep(pattern,x) searches for matches to pattern within x;
for details see ?regex

gsub(pattern,replacement,x) replacement of matches
determined by regular expression matching; sub() is the
same but only replaces the first occurrence.

tolower(x) convert to lowercase
toupper(x) convert to uppercase

Math
sin, cos, tan, asin, acos, atan, atan2, exp
max(x), min(x) maximum and minimum of elements of x
range(x) same as: c(min(x), max(x))
sum(x) sum of the elements of x
prod(x) product of the elements of x
cumsum(x) returns a vector of same length as x with the

cumulative sum of the elements of x
mean(x), median(x) mean and median of elements of x
weighted.mean(x, w) mean of x with weights w
rank(x) ranks of the elements of x
sd(x) standard deviation of x
cor(x) correlation matrix of x (matrix or data frame)
round(x) rounds the elements of x; use round(x, n) to

round to n decimals

http://devcheatsheet.com/tag/r/

log(x) computes the natural logarithm of x; use log2(x),
log10(x), or log(x, base) to specify other base

union(x,y), intersect(x,y), setdiff(x,y),
setequal(x,y), is.element(el,set) “set”
functions

NOTE: Many math functions have a logical parameter
na.rm=FALSE to specify missing data (NA) removal.

Advanced Data Manipulation
relevel(x, ref) set ref as the reference levels of factor x
factor(f, levels=c(“B”,”A”,...)) where B, A,
... are the levels of factor f, will return a factor of the same
length as f with its levels reordered according to levels.

reorder(f, dim, fun) reorder the levels of factor f
according to their values on dimension dim, values are
computed by function fun (default: mean)

melt(data, id, measure, variable.name =
“variable”, value.name = “value”) {reshape}
convert data frame data from “wide” to “long” format; id
specifies the variables that should remain in separate columns,
can be identified by number: e.g., c(1:4, 7), or name: e.g.,
c(“A”,”B”,…); measure specifies the columns that should
be collapsed into a single column, with same specification
options as id; variable.name is the name of the new
variable column; value.name is the name of the new column
that contains the values that were in the measure columns

dcast(data, formula, value.var,
fun.aggregate) {reshape} convert data frame data
from “long” to “wide” format; in formula: variables to the
left of the ~ define rows, and variables to the right define
columns; value.var is the column to use for filling the new
columns; can be used to create summary tables by specifying
fun.aggregate (default is length, can also use mean,
median, etc.) and optional margins argument

ddply(data, variables, fun) {plyr} split data frame
data into subsets defined by each unique combination of
variables, apply function fun, and return combined
results; ddply(data, variables, summarize,
...) to define specialized summary computations; only
summary results and variables will be in the output data
frame.

Basic Statistics
cor.test(x, y) correlation test; default method is pearson,

use method = “spearman” to specify spearman rank
correlation, can also use “kendall”; alternative syntax
useful for data frames: cor.test(~ x + y, data =
mydata)

t.test(y, mu=0) one-sample t-test with null hypothesis
that mean is 0

t.test(y ~ x, data=mydata) independent-samples t-
test where y is the response and x is the grouping variable.

t.test(y1, y2) independent-samples t-test to compare the
means of y1 and y2; use paired = TRUE for a paired-
samples t-test.

aov(y ~ A, data = mydata) one-way ANOVA
aov(y ~ A + x, data = mydata) ANCOVA for factor A

and covariate x
aov(y ~ A + B + A:B, data = mydata) full two-way

ANOVA; can also use A*B in formula to specify both main
effects and interaction

aov(y ~ A*B + Error(Subject/(A*B)), data =
mydata) two-way within-subject ANOVA

aov(y ~ W*B + Error(Subject/W), data =
mydata) mixed ANOVA for within-subject factor W and
between-subject factor B

NOTE: aov(...) will return a model fit object and print ANOVA
diagnostics, to get ANOVA table use summary(aov(...))
or anova(aov(...))

Regression and Model Fitting
lm(y ~ x1 + x2 + x3, data=mydata) basic multiple

linear regression
glm(y ~ x, data=mydata, family=“binomial”)

basic logistic regression for binary variable y; use
glm(cbind(Y,N) ~ x, data=mydata,
family="binomial") for logistic regression on counts
where Y is the number of “successes” and N is the number of
“failures”

fitted(m) returns predicted values from model m
summary(m) prints a useful model summary, including

parameter estimates (with SE and t-tests) and R^2 values
anova(m1, m2) compare fits of nested models (i.e., stepwise

regression test)
lmer(y ~ x+(1|Item)+(1|Subject),data=mydata)
{lme4} multi-level regression with random effects of Item
and Subject; for multilevel regression with random effect of
Subject on slope, use lmer(y ~ x + (x |
Subject), data=mydata)

Plotting with ggplot2
The ggplot command establishes the base “aesthetics” of the
plot, then the rest of the plot aspects (type of “geom”, axis labels,
etc.) are added using the + operator. Examples:
ggplot(data, aes(x,y)) + geom_boxplot()
ggplot(data, aes(x,y,color=z)) + geom_line()
ggplot(data, aes(x,y)) +

stat_summary(fun.y=”mean”, geom=”line”) +
facet_wrap(~z)

ggplot(data, aes(x,y)) set up a plot of data with x on
the horizontal and y on the vertical; to specify mappings for
color, shape, linetype, size, etc. use color= , shape= ,
linetype= , size= , etc. in aes(…)

geom_line(), geom_point(), geom_bar(),
geom_boxplot(), geom_errorbar(),
geom_pointrange(), geom_tile() most useful
geoms; each has unique aesthetics that must/can be specified

stat_summary(fun=, geom=) Summarize y values at
every unique x; geom specifies the resulting plot type (line,
point, pointrange, etc.); fun is the summary function, use
fun.y for single-element summaries (mean, median,

etc.) and fun.data for range summaries (mean_se, etc.;
Note: some of these require the Hmisc package); can also
include additional options such as object size.

plotmatrix(data) makes a grid of scatterplots for each pair
of columns in data; the diagonal contains a density plot for
each column

facet_wrap(~ f) create a wrapped ribbon of panels with
subsets of the dataset in different panels; f is the subsetting
factor; use optional arguments nrow= or ncol= to specify
number of rows or columns

facet_grid(rows ~ columns) create a grid of panels with
subsets of the dataset in different panels; rows is the
subsetting factor for rows, columns is the subsetting factor
for columns

labs(x=, y=, ...) set labels for x and y axes; can also be
used to set labels for other aesthetics (color, shape, etc.)

scale_[]_manual(values=c(...)) set mapping for a
particular scale (replace [] with name of scale); useful for
overriding default scales of, e.g., shape or color; Example:
scale_color_manual(values=c(“black”, “red”,
“blue”))

theme_bw() a higher contrast display theme; use
base_size= to set base font size; in addition to built-in
themes, new themes can be defined

theme(...) set options/theme elements for a single plot; ex:
+theme(strip.background=element_rect(fill=N
A, color="white")) will remove the grey fill and black
outline from the title strip

ggsave(file, plot) save plot, default is
last_plot() as an image file; file format is determined by
the file extension, such as pdf, tiff, png, etc; use height,
width, and dpi options to customize

pdf() open a pdf file for graphics output, all subsequent plots
will be written to separate pages in the file; use
file=”filename” to specify filename (default is
Rplots.pdf); use dev.off() to stop writing to the file.

Programming
if(cond) { cons.expr } else { alt.expr }
ifelse(test, yes, no) returns a value with the same

shape as test filled with elements from yes where test is
TRUE and elements from no where test is FALSE.

for(var in seq) { expr }
while(cond) { expr }
do.call(funname, args) executes function funname

with arguments args
funname <- function(arglist) { expr
return(value) } creates a function called funname
that takes arguments arglist, executes expr, and returns
value; arguments can be made optional by specifying default
values in arglist using opt.arg1=default.value

source(“filename”) reads and runs all of the commands in
a file

	R Cheat Sheet

