Dan Mirman
22 May 2020
Schedule | ||
---|---|---|
Time | Topic | Data set(s) |
9-9:30am | Introduction | Visual Search |
9:30-10am | Exercise | WISQARS, Naming Recovery |
10-10:45am | Non-linear change | Word Learning |
10:45-11:30am | Exercise | CP |
11:30-noon | Within-subject effects | Target Fixation |
12-1pm | Lunch break; Exercise | Az |
1-1:45pm | Logistic GCA; Exercise | Target Fixation; Word Learning |
1:45-2:30pm | Individual Differences | Deviant Behavior; School Mental Health |
2:30-3pm | Exercise; Open Q&A | NA |
tidyverse
, patchwork
: data management and graphing data and model fitslme4
, lmerTest
: fitting growth curve models and estimating p-valuespsy811
: example data sets and helper functions. To install: devtools::install_github("dmirman/psy811")
I recommend our gazeR
package: http://github.com/dmirman/gazer. GazeR also contains the GCA helper functions (psy811
has more example data sets so we’ll use that one for this workshop).
Nested data are not independent
Nested data are not independent
Related by continuous variable (i.e., time, but could be [letter] size, number of distractors, etc.)
Level 1: \(Y_{ij} = \beta_{0i} + \beta_{1i} \cdot Time_{j} + \epsilon_{ij}\)
Level 2: model of the Level 1 parameter(s)
Level 1: \(Y_{ij} = \beta_{0i} + \beta_{1i} \cdot Time_{j} + \epsilon_{ij}\)
Level 2:
\(\beta_{0i} = \gamma_{00} + \gamma_{0C} \cdot C + \zeta_{0i}\)
\(\beta_{1i} = \gamma_{10} + \gamma_{1C} \cdot C + \zeta_{1i}\)
Residual errors
Fixed effects
Random effects
# the psy811 package includes helper functions and example data sets
# to install: devtools::install_github("dmirman/psy811")
library(psy811)
summary(VisualSearchEx)
## Participant Dx Set.Size RT
## 0042 : 4 Aphasic:60 Min. : 1.0 Min. : 414
## 0044 : 4 Control:72 1st Qu.: 4.0 1st Qu.: 1132
## 0083 : 4 Median :10.0 Median : 1814
## 0166 : 4 Mean :12.8 Mean : 2261
## 0186 : 4 3rd Qu.:18.8 3rd Qu.: 2808
## 0190 : 4 Max. :30.0 Max. :12201
## (Other):108
library(lme4)
library(lmerTest) #for estimated df and p-values
# a null, intercept-only model
vs.null <- lmer(RT ~ 1 + (Set.Size | Participant), data=VisualSearchEx, REML=FALSE)
# add effect of set size
vs <- lmer(RT ~ Set.Size + (Set.Size | Participant), data=VisualSearchEx, REML=F)
# add effect of diagnosis
vs.0 <- lmer(RT ~ Set.Size + Dx + (Set.Size | Participant), data=VisualSearchEx, REML=F)
# add set size by diagnosis interaction
vs.1 <- lmer(RT ~ Set.Size * Dx + (Set.Size | Participant), data=VisualSearchEx, REML=F)
# compare model fits
anova(vs.null, vs, vs.0, vs.1)
## Data: VisualSearchEx
## Models:
## vs.null: RT ~ 1 + (Set.Size | Participant)
## vs: RT ~ Set.Size + (Set.Size | Participant)
## vs.0: RT ~ Set.Size + Dx + (Set.Size | Participant)
## vs.1: RT ~ Set.Size * Dx + (Set.Size | Participant)
## npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
## vs.null 5 2283 2297 -1136 2273
## vs 6 2248 2265 -1118 2236 36.90 1 1.2e-09 ***
## vs.0 7 2241 2261 -1114 2227 8.58 1 0.0034 **
## vs.1 8 2241 2264 -1113 2225 2.01 1 0.1566
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Model comparisons | ||||||||
---|---|---|---|---|---|---|---|---|
npar | AIC | BIC | logLik | deviance | Chisq | Df | Pr(>Chisq) | |
vs.null | 5 | 2283 | 2297 | -1136 | 2273 | NA | NA | NA |
vs | 6 | 2248 | 2265 | -1118 | 2236 | 36.902 | 1 | 0.000 |
vs.0 | 7 | 2241 | 2261 | -1114 | 2227 | 8.585 | 1 | 0.003 |
vs.1 | 8 | 2241 | 2264 | -1113 | 2225 | 2.006 | 1 | 0.157 |
vs
) substantially improves model fit: response times are affected by number of distractorsvs.0
) significantly improves model fit: stroke survivors respond more slowly than controls dovs.1
), does not significantly improve model fit: stroke survivors are not more affected by distractors than controls are## Linear mixed model fit by maximum likelihood . t-tests use Satterthwaite's
## method [lmerModLmerTest]
## Formula: RT ~ Set.Size * Dx + (Set.Size | Participant)
## Data: VisualSearchEx
##
## AIC BIC logLik deviance df.resid
## 2241 2264 -1113 2225 124
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.759 -0.317 -0.079 0.317 6.229
##
## Random effects:
## Groups Name Variance Std.Dev. Corr
## Participant (Intercept) 613397 783.2
## Set.Size 380 19.5 1.00
## Residual 756827 870.0
## Number of obs: 132, groups: Participant, 33
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2078.7 264.4 35.7 7.86 2.6e-09 ***
## Set.Size 73.5 11.2 54.9 6.54 2.1e-08 ***
## DxControl -1106.1 357.9 35.7 -3.09 0.0039 **
## Set.Size:DxControl -21.7 15.2 54.9 -1.43 0.1585
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) Set.Sz DxCntr
## Set.Size -0.090
## DxControl -0.739 0.066
## St.Sz:DxCnt 0.066 -0.739 -0.090
## convergence code: 0
## boundary (singular) fit: see ?isSingular
Exercise 1A: Analyze the US state-level suicide rate data from the WISQARS (wisqars.suicide
)
Exercise 1B: Analyze the recovery of object naming ability in aphasia (NamingRecovery
)