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Our previous work interpreted single-lognormal fits to inter-gaze distance (i.e., ‘‘gaze
steps’’) histograms as evidence of multiplicativity and hence interactions across scales in
visual cognition. Bogartz and Staub (2012) proposed that gaze steps are additively decom-
posable into fixations and saccades, matching the histograms better and illustrating how
additive processes can generate tailed histograms. In this reply, we consider the validity
of fixation-versus-saccade distinctions, reviewing eye-movement literature and re-analyz-
ing our original data. Careful examination of empirical literature undermines rigid fixation-
versus-saccade distinctions. By comparing original gaze-step series with surrogate data, we
present new evidence that temporal clustering in gaze-step data reflects interactive rather
than additive processes. We conclude by discussing the relation between traditional
notions of interactivity between components and complex-systems notions of interactivity
across scales.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

A central question in cognitive science is whether cog-
nitive systems are composed of distinct, independent pro-
cessing components or whether their performance reflects
interactions across many scales. That is, not only may com-
ponents interact on a strictly cognitive scale of processing,
but the activity of each component may depend on its
nesting, within larger components and the context at large.
This question has been investigated for decades through a
variety of clever manipulations of tasks and stimuli using
traditional experimental psychology paradigms (for a re-
cent review see Mirman, Bolger, Khaitan, & McClelland,
in press). More recently, insights from statistical physics
have provided new tools for examining perceptual-motor
fluctuations for evidence of interactions across scales in
. All rights reserved.
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cognitive systems (Holden, Van Orden, & Turvey, 2009;
Ihlen & Vereijken, 2010; Van Orden, Holden, & Turvey,
2003, 2005). One link between statistics and interactivity
is the mathematics of random factors: the sum of very
many independent factors typically yields normal distribu-
tions over time, and the multiplication of interacting
factors across many scales can yield heavy-tailed distribu-
tions over time (e.g., lognormal or power law; Sornette,
2004). For example, Holden et al. (2009) argued for interac-
tivity based on heavy-tailed (lognormal and power law)
distributions of response times in naming and reading
tasks.

Extending this work, we (Stephen & Mirman, 2010)
examined the distribution of pixel distances between sam-
pled gaze positions on a computer screen (henceforth,
‘‘gaze steps’’) during three visual-cognitive tasks. Like Hol-
den et al.’s response-time data, gaze-step histograms were
heavy-tailed. We compared these empirical histograms to
best-fitting (according to maximum likelihood estimation)
normal, exponential, gamma, lognormal, and power-law
distributions, assuming only one degree of freedom rather
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than testing mixtures of these distributions. The best-
fitting one-degree-of-freedom distribution was lognormal,
with only one participant’s gaze steps in one task exhibit-
ing power-law form. Following Holden et al.’s reasoning,
this evidence was consistent with the hypothesis that
visual cognition reflects interactions among multiple
scales of behavior.
2. Criticism by Bogartz and Staub

Bogartz and Staub (2012; henceforth ‘‘B&S’’) raised two
important concerns regarding this conclusion:

(1) Our modeling of gaze steps failed to address cogni-
tive, neural, and motor processes underlying visual
cognition. Gaze is the sum of two separate mecha-
nisms: fixations and saccades.

(2) Considering the overall distribution of gaze steps
ignores the temporal structure of the gaze steps:
gaze steps are clustered in periods of very little posi-
tional change (fixations) and periods of rapid change
(saccades).

Addressing the first concern, we review the eye-tracking
literature highlighting that, although serving as a useful
descriptive heuristic, a fixation-versus-saccade dichotomy
fails to capture a broader, more continuous variety of eye
movements. Further, we will show that B&S’s additive
two-process model leads to implausible predictions.

The second concern applies to any analysis omitting
time – our original model and B&S’s model. According to
B&S, the temporal clustering of gaze steps corresponds to
two separate states – fixations and saccades. However,
there exist analytical methods for directly testing whether
temporal structure is due to purely additive processes (i.e.,
linear autocorrelation, described below) or to interactive
processes. We will show that the temporal structure in
gaze-step time series is consistent with interactive rather
than additive processes, consistent with our original con-
clusion (Stephen & Mirman, 2010).
3. Empirical evidence for fixations and saccades as two
separable states

As B&S note, gaze behavior in visual search tasks like
the ones we tested is usually described in terms of two
states: fixations and saccades. However, it is important to
remember that this description is not a mechanism or mod-
el. As Rayner (1998, p. 373) put it, during fixations ‘‘our
eyes remain relatively still’’, but, critically, he went onto
point out that ‘‘the term fixation is something of a misno-
mer. The eyes are never really still’’. He further identified
three non-saccadic eye movements – nystagmus, drift,
and microsaccades – which ‘‘most experimenters inter-
ested in reading assume [. . .] are ‘‘noise’’ and adopt scoring
procedures that ignore them’’ (p. 374). Indeed, these
‘‘fixational’’ eye movements appear to be influenced by
cognitive processes such as covert attention (e.g., Engbert
& Kliegl, 2003). The same argument holds for newly-
discovered eye movements, such as glissades – wobbling
eye movements at the end of a saccade (e.g., Nyström &
Holmqvist, 2010). Strikingly, ‘‘researchers must actively
choose whether to assign the glissades to saccades or fixa-
tions; the choice affects dependent variables such as fixa-
tion and saccade duration significantly’’ (Nyström &
Holmqvist, 2010, p. 188). So fixations and saccades not
exhaustive, but researchers maintain the illusion that they
are by assigning all other eye behaviors to one state or the
other.

The fixation-versus-saccade dichotomy also belies the
practical difficulty of differentiating these two hypotheti-
cally distinct states, as illustrated by the proliferation of
algorithms for partitioning gaze into fixations and saccades
(Karsh & Breitenbach, 1983; Pillalamarri, Barnette, Birk-
mire, & Karsh, 1993; Salvucci & Goldberg, 2000) and these
algorithms’ sensitivity to parameters (Blignaut, 2009), dis-
play luminance (Doma & Hallett, 1988), visual object type
(Manor & Gordon, 2003), and participant population (Shic,
Chawarska, & Scassellati, 2008).

Since researchers must actively decide what will count
as fixations, saccades, or noise; fixations and saccades
more accurately represent idealized endpoints on a contin-
uum, rather than two categorically distinct states. No
doubt, for many research questions, separating gaze
behavior into fixations and saccades is a reasonable
approximation, but approximations should not be mis-
taken for facts about the underlying system.
4. Conceptual problems with argument presented by
B&S

Besides the difficulty of distinguishing fixations and
saccades empirically, the model that B&S implemented
based on this distinction leads quickly to challenges of
interpretation. B&S proposed that the addition of two nor-
mal (i.e., additive) distributions—one for fixations, the
other for saccades—outperforms the lognormal (i.e., a mul-
tiplicative) model. However, this additive model entails
surprising implications for expected gaze steps. About
20% of the saccade distribution extends beyond 100 pixels
(i.e., non-physiological according to B&S) and almost half
extends into (logically impossible) negative values
(Fig. 1). Hence, B&S omitted most of the saccade distribu-
tion, turning a normal distribution into a fragment that fat-
tens the tail of the fixation distribution. As a result, not
only may fixations and saccades be difficult to define, but
B&S’s model is not clearly interpretable.

Where does that leave the B&S account? Their charac-
terization of gaze behavior as the sum of two distinct states
is superficial and incomplete; their proposed additive two-
state model is actually a one-state-plus-tail-fragment
model. Even if their result confirmed that tailed distribu-
tions might be fit by additive mixtures of additive distribu-
tions, their foundational claim of two distinct states does
not match what is known about eye movements and their
statistical model does not actually implement the full set
of ‘‘two additive distributions’’ proposed. However, their
point that gaze steps have temporal structure – that
they tend to cluster into periods of relative stability and
periods of relatively rapid change – comes with further



Fig. 1. Probability density distributions for the additive model proposed by Bogartz and Staub. The solid line represents the fixation distribution; the dashed
line represents the saccade distribution. Both panels show the same data. The top panel’s axes are scaled to make the fixation distribution most clear (the
saccade distribution is the dashed line essentially at Density = 0) and the bottom panel’s axes are scaled to make the saccade distribution most clear (the
fixation distribution is the vertical line essentially at step size = 0).
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entailments for the additivity of gaze steps and brings us to
the new question: Does the temporal structure reflect
additive or interactive processes? In what follows we de-
scribe an approach to answering this question and apply
it to our original data.

5. Temporal clustering: additivity and interactivity in
time series

Our original claim and the counter-argument proposed
by B&S were based on attempting to match the shape of
the aggregate histograms of gaze steps with that of distri-
bution functions. As illustrated in the top panel of Fig. 2,
considering aggregate histograms ignores the temporal
structure because each point contributes equally to the
distribution, regardless of sequence. When we consider
the time series – that is, how each particular data point’s
value fits into the broader sequence of values – we can
ask whether the value observed at a particular time reflects
linear, additive processes operating over past values or
interactive (i.e., multiplicative) processes operating over
multiple time scales of past values.

By definition, modeling each value in a purely linear,
additive series requires only three parameters: (1) the
mean, (2) the variance, and (3) the linear autocorrelation
(Theiler, Linsay, & Rubin, 1994). In plainer terms, this def-
inition of additive process means that each and every value
of an additive process must be well predicted by (1) the
average of all values in the series, (2) the square root of
the average squared differences of all values from the
mean, and (3) the average independent contributions of
each previous value to each current value (Fig. 2, middle
panel). Linear autocorrelation is a necessary mathematical
entailment of B&S’s view of temporal clustering as the
addition of two separable processes. Roughly speaking,
short-lag positive correlations produce clusters of simi-
lar-valued gaze steps and longer-lag negative correlations
produce alternation between ‘‘fixation’’ clusters and ‘‘sac-
cade’’ clusters. If temporal structure reflects interactions
across time scales (Fig. 2, bottom panel), gaze-step series
cannot be exhaustively modeled by the mean, variance,
and autocorrelation. In this multiplicative case, each gaze
step would not be predictable only as part of a single fixa-
tion or saccade but instead as the result of extended se-
quences of fixations and saccades preceding the current
value over many time scales at once.

We can statistically test whether an observed series fits
the mathematical definition of additivity, i.e., whether it is
exhaustively modeled by its mean, variance, and linear
autocorrelations. To do this, we create a distribution of
new, ‘‘surrogate’’ versions of the original series, each of
which have the same values as the original series (thus
preserving the mean and variance) and are constructed
to preserve linear autocorrelation (Schreiber & Schmitz,
1996). That is, the average independent contributions of
previous values to current values can mimic those found
in the original series, but the new scrambled order means
that the original sequence—and any overlapping of time



Fig. 2. Schematics representing the different hypotheses represented
both in our earlier work (Stephen & Mirman, 2010) and in the present
reply. The top panel represents our earlier question regarding whether
the empirical histograms of gaze steps were best fit by normal,
exponential, gamma, lognormal, or power-law distributions in single-
degree-of-freedom tests. The middle and bottom panels represent two
different hypotheses regarding the exact same schematic example of gaze
steps. These two different hypotheses address modeling any given
current value of a variable (e.g., the gaze step size for any single given
pair of consecutive eye-tracking samples)—we emphasize the 11th value
here only for the purpose of the schematic. The middle panel schematizes
linear autocorrelation: each previous value contributes, on average, an
independent effect on the current value. A grey horizontal line indicates a
cutoff that might translate mean gaze-step size into a fixation–saccade
distinction, provided Bogartz and Staub’s assumption of additivity. The
bottom panel schematizes the multiplicative case in which each single
value emerges from the nesting of one time scale within another. Each
current value is influenced by the previous value, but at the same time,
the value of the current and just previous (lag-1) values reflect influence
from the two previous values before them. In turn, these four values
together (current, lag-1, lag-2, and lag-3) are influenced by the four values
before them—and so on. Whereas linear autocorrelation stresses the
independent effects of previous values, multiplicative series exhibit an
entangled heredity in which longer-scale behavior constraints progres-
sively shorter-scale behavior.

Fig. 3. The top panel shows the first 10,000 samples of the gaze-step time
series for the visual-world paradigm task for participant 1. The bottom
panel shows the multifractal spectrum for the original series (dark, solid
curve) as well as those for 10 linear surrogates corresponding to the
additive structure of the original series (grey, dashed curve). The
multifractal spectrum of the original series here is significantly wider
than the multifractal spectra of the surrogates. This observation entails
that the temporal sequence of the original series (top panel) is signifi-
cantly different from what would be expected from purely additive
dynamics, that is, from purely separable processes.
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scales—is destroyed. These new, fabricated additive series
are called ‘‘surrogates’’ because they represent the best
approximation of original data assuming that these data
are additive. If B&S are correct, gaze-step series should be
statistically indistinguishable from a sample of additive
surrogates. We apply a ‘‘multifractal analysis’’ (Appendix
A) to estimate a ‘‘multifractal spectrum’’ and its width.
We evaluate whether multifractal-spectrum width for ob-
served gaze-step series deviates significantly from (i.e.,
falls outside the 95% confidence interval of) multifractal-
spectrum widths for a distribution of additive surrogates
(e.g., Fig. 3). This comparison provides formal test of a
key intuition behind B&S’s argument: that temporal clus-
tering in gaze-step data reflects the addition of two inde-
pendent processes—fixations and saccades.
1 Augmented Dickey–Fuller tests rejected nonstationarity in all cases,
p < .01, suggesting that mean, variance, and autocorrelation were all well-
defined for the purposes of constructing the surrogate series.

2 Bootstrap t-tests provided comparable results, with no change in
significance.

3 Pure additivity is the ‘‘null hypothesis’’; failure to reject is not evidence
for additivity.
6. Reanalysis of the gaze-step data

First, we constructed gaze-step series from the first
10,000 gaze steps less than 100 pixels, concatenating
across multiple trials of continuous eye-tracking at
500 Hz. Multifractal analysis requires thousands of data
points for reliable estimation. Next, we generated 50 addi-
tive surrogate series (according to Schreiber and Schmitz’s
(1996) IAAFT algorithm) for each participant’s gaze-step
series over the course of an entire task.1 We used Chhabra
and Jensen’s (1989) multifractal algorithm for 18 series (i.e.,
6 participants in 3 tasks) and for 50 corresponding surro-
gates (i.e., total of 18 � 50 = 900 surrogates). One-sample,
two-tailed t-tests contrasted each original series’ multifrac-
tal-spectrum width with those of its surrogates (Schreiber
& Schmitz, 2000; Fig. 3).2

For 15 out of 18 cases (83%), multifractal test rejected
pure additivity (schematized in Fig. 2, middle panel) and
confirmed multiplicativity (schematized in Fig. 2, bottom
panel).3 These data (Table 1) indicate that, contrary to
B&S’s view, temporal structure of the majority of the data
under discussion was inconsistent with additivity. Larger
samples may provide insights into task or individual



Table 1
Multifractal spectrum widths for original and surrogate time series.

Participant VWP Single-feature search Conjunction search

Original Surrogates Original Surrogates Original Surrogates

M SE M SE M SE

1 1.04** .98 .006 .71** .63 .009 1.07** 1.13 .010
2 .88** .85 .004 .70** .66 .003 .85** .94 .007
3 .85 .86 .005 .93 .93 .005 .84* .86 .006
4 .86 .86 .004 .79** .76 .005 .79** .85 .005
5 1.00** .97 .006 .92** .79 .005 .94** .78 .007
6 .97** .79 .007 .91** .81 .011 .88** .83 .008

* p < .01.
** p < .0001.
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differences leading to differences in degree of interactivity
in different data sets (see also Ihlen & Vereijken, 2010;
Mirman, Irwin, & Stephen, 2012).
7. Conclusion

Previously, we examined histograms of gaze steps in vi-
sual-cognitive tasks to argue for interactions across multi-
ple scales in the visual cognitive system (Stephen &
Mirman, 2010). Bogartz and Staub (2012) stressed that
using gaze steps ignores decades of eye tracking research
showing that, in the tasks we tested, gaze transitions be-
tween two states: fixations and saccades. However, closer
examination of the literature shows that this distinction
is only a heuristic approximation; gaze actually exhibits
movements varying widely across individuals and con-
texts. This context-sensitivity and variability is typical of
systems structured by cross-scale interactivity. Further,
although Bogartz and Staub’s sum-of-two-normals model
statistically outperformed our single-lognormal distribu-
tion, this two-state model makes deeply questionable
assumptions about the distribution of saccades. So, not
only were B&S’s theoretical assumptions questionable,
their statistical model requires arbitrary tailoring of distri-
butions to implement those assumptions.

Bogartz and Staub also pointed out that gaze steps ap-
pear to be temporally clustered in periods of relative sta-
bility and periods of rapid movement. They took this
clustering as evidence of two distinct states summed to-
gether, but closer inspection shows that this additive
description is inaccurate. Multifractal analysis of the time
series showed that temporal clustering was mostly incon-
sistent with additive models in which the eyes alternate
between independent states of fixations and saccades.
Gaze steps are indeed clustered in time, but the clustering
goes beyond alternating between two states, it reflects
nested processes unfolding at many different time scales
simultaneously.

We agree with Bogartz and Staub that the question of
interactivity is just about as old as cognitive science itself.
Historically, cognitive scientists have asked the interactiv-
ity question with regard to particular levels of processing
(Dell, 1986; Rumelhart, 1977, chap. 27); for example,
whether there is bi-directional information flow between
phonological and lexical processes (for recent reviews see
McClelland, Mirman, & Holt, 2006; Mirman et al., in press;
for a recent example of the debate see Farmer, Christiansen,
& Monaghan, 2006; Farmer, Monaghan, Misyak, &
Christiansen, 2011; Staub, Grant, Clifton, & Rayner, 2009,
2011). If the cognitive system is truly interactive across
scales, as we and others have argued and Bogartz and
Staub seem to agree (or at least be willing to consider),
then the next logical question is: how fundamental are
componential distinctions like that between ‘‘phonological
processing’’ and ‘‘lexical processing’’? That is, if phonolog-
ical processes are influenced by lexical processes and
lexical processes are influenced by phonological pro-
cesses—and if both exhibit effects of context at the scales
of population differences, task differences, and stimulus
differences, then they are not really separate processes at
all.

There are two ways to proceed from this point. The tra-
ditional cognitive science way is to assume that the pro-
cesses are at least somewhat separable and that, to a
useful approximation, we can study them separately. This
way has led to evidence for interactivity across cognitive
and perceptual systems (Mirman et al., in press). A two-
factor ANOVA provides the typical model (and the stan-
dard analytical tool) for this notion of interactivity: the
analysis begins with independent predictors that can con-
tribute alone or in ‘‘interaction’’ with one another. How-
ever, because ANOVA assumes independent predictors,
this is only the tip of the interactivity iceberg. Newer com-
plexity-based approaches bring with them the suggestion
that interactions may not operate solely between separa-
ble processes at a given scale of analysis. Rather, interac-
tions may manifest in a spider-web-like entanglement of
processes, possibly unfolding seamlessly from relatively
large scales to relatively small scales. Analytical ap-
proaches from statistical physics and nonlinear dynamics
can be used to probe these interactions across scales for in-
sights regarding the emergence, operation, and develop-
ment of different but closely interrelated, and ultimately
inseparable capacities supporting cognition (Stephen,
Anastas, & Dixon, 2012).

These approaches need not be in conflict; after all, to
some degree, they are aimed at answering the same ques-
tion and even interactive systems exhibit rich heteroge-
neous structure. However, it is important to distinguish
between theoretical claims and simplifying assumptions.
One might make the simplifying assumption that there
is, for example, a set of lexical processes that can be stud-
ied more or less separately, or that eye movements can be
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divided into fixations and saccades for the purposes of
studying reading or speech comprehension, but these
should not be regarded as fundamental properties of the
cognitive system. Heterogeneity of mechanism does not
require separability. Raw measurements of perceptual-mo-
tor systems may reveal the interwoven structure of the
cognitive system in which lexical processes and visual pro-
cesses reflect effects of intentions, contexts, and tasks at
broader scales and effects of motor, physiological, and neu-
ral processes at finer scales (Van Orden, Kello, & Holden,
2010). Eye movements are just one measurement we
might draw from this swarm of cross-scale interactions,
and inventorying separable types of movements is of lim-
ited use under such conditions. Much has been learned
from decomposing the cognitive system (Bechtel, 2009),
but there may be much to learn from approaching the cog-
nitive system instead as a cascade of many inseparable
factors.
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Appendix A

Here, we outline Chhabra and Jensen’s (1989) multifrac-
tal analysis for non-negative series x(t) of length N.

Step 1: Bin time series x(t) using Nn nonoverlapping
windows of length 4 6 n 6 N=4, where Nn is the great-
est integer 6 N=n.
Step 2: For each n, calculate proportion P for ith bin
(i = 1,2, . . . ,Nn � 1,Nn),
PiðnÞ ¼
Pni

k¼nði�1Þþ1xðkÞ
PnNn

m¼1xðmÞ
; ðA1Þ

Multifractal analysis examines proportion growth with
greater n—for regions of x(t) with greater or lesser pro-
portion. For series with homogeneous temporal struc-
ture, Pi(n) is approximately equivalent across n-sized
bins, and proportion should follow the single power-
law relation- ship:

PðnÞ � n1

PðNnÞ � N�1
n ;

ðA2Þ

However, for series with heterogeneous temporal struc-
ture, Pi(n) may vary considerably across bins, growing
more slowly or more quickly with n for regions of x(t)
with higher or lower proportions, respectively. For ser-
ies with heterogeneous temporal structure, Eq. (A2)
generalizes to

PðnÞ � naðqÞ;

PðNnÞ � N�aðqÞ
n ;

ðA3Þ

with noninteger (fractional or ‘‘fractal’’) values for a(q).
Multifractal analysis estimates different rates by
weighting Pi(n) with a ‘‘mass’’ (Step 3) and examining
how mass-weighted proportion grows with n (Step 4).
Step 3: Calculate mass li(q,n):

liðq; nÞ ¼ ½PiðnÞ�q
PNn

j¼1½PiðnÞ�q
; ðA4Þ

where parameter q emphasizes higher or lower propor-
tions for q > 1 or q < 1, respectively.
Step 4: Calculate a(q) as

aðqÞ ¼
PNn

i¼1liðqÞ log PiðnÞ
log n

;

aðqÞ ¼ �
PNn

i¼1liðqÞ log PiðNnÞ
log Nn

:

ðA5Þ

for linear relationships between numerator and denom-
inator, r P :95. If the Shannon entropy of li(q,n) yields
similarly strong linear relationship with log n, then

f ðqÞ ¼
PNn

i¼1liðq; nÞ log liðq; nÞ
log n

;

f ðqÞ ¼ �
PNn

i¼1liðq; nÞ logliðq; nÞ
log Nn

;

ðA6Þ

and f(a(q)) is a single point in the multifractal spectrum
(Fig. 2, bottom panel).
Step 5: Recalculate f(q) and a(q) for many values of q,
spanning a range allowing correlations between
numerators and corresponding denominators in Eqs.
(A5) and (A6) to drop below r = .95 on either end of
the spectrum. We used a range �20 6 q 6 20, incre-
mented by .005.
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