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a b s t r a c t

Many cognitive theories have described behavior as the summation of independent contri-
butions from separate components. Contrasting views have emphasized the importance of
multiplicative interactions and emergent structure. We describe a statistical approach to
distinguishing additive and multiplicative processes and apply it to the dynamics of eye
movements during classic visual cognitive tasks. The results reveal interaction-dominant
dynamics in eye movements in each of the three tasks, and that fine-grained eye move-
ments are modulated by task constraints. These findings reveal the interactive nature of
cognitive processing and are consistent with theories that view cognition as an emergent
property of processes that are broadly distributed over many scales of space and time
rather than a componential assembly line.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Cognition is the product of a large, complex system. Like
any complex system, the cognitive system consists of com-
ponents (i.e., constituent parts) that interact with one an-
other. Much of cognitive science has concerned itself with
understanding the parts or components: Is there a face
recognition module? Does language processing require a
rule module? etc. Other researchers have focused on the
interactions and the structure that emerges from those
interactions. Clearly, understanding cognition requires
understanding both the components and their interactions,
but where to begin? That is, should cognition be regarded as
component-dominant or interaction-dominant?

The distinction between component-dominance and
interaction-dominance is a matter of organization (Van Or-
den, Holden, & Turvey, 2003). In a system dominated by
components, cognitive labor is divided among constituent
parts. Specialized functions are locally encapsulated, and
cognition is the summed activity of all constituent parts.
When interactions dominate, organization is emergent

and context-dependent. Functions are not encapsulated –
the constituent parts arrange themselves according to the
current demands of context. That is, components may flex-
ibly bind together or break down to suit the changing con-
ditions for a given task (Kay, 1988). Here, organization is an
emergent coordination, and rather than obeying local divi-
sions into parts, this coordination emerges in response to
ongoing changes in information flow (Kelso, 1995).

2. Controversy in cognitive science

Cognitive science has traditionally focused on identify-
ing the constituent parts of the cognitive architecture.
For example, visual cognition would be divided among an
attention component, a feature detection component, a
recognition component, a feature integration component,
etc., and each component would have a separate context-
independent function (Treisman, 1993). Each component
receives information from the last and, having processed
the information in its specialized manner, passes the infor-
mation onto the next component. The amount of time that
it takes to find the target is the sum of processing time
needed by each component along the way. Performance
differences due to experimental manipulations or individ-
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ual differences can be reduced to changes within specific
components. This formulation remains an influential way
to think about cognition (e.g., Coltheart, 1999; Dietrich &
Markman, 2003; Marr, 1982; Wagenmakers, Farrell, & Rat-
cliff, 2004).

However, throughout the history of cognitive science,
alternative perspectives have emphasized the role of emer-
gence. Component-dominance makes for concise schemat-
ics of cognitive process, but the evidence suggests that
components may not be so rigidly specialized and that
the interactions may be more fundamental for cognition.
For instance, Lashley (1950) and Hebb (1949) argued that
learning could not be localized within a specific part of
the brain but is encoded as distributed patterns of activa-
tion and connection among individual neurons. Based on
neuropsychological data, Luria (1973a, 1973b) argued that
cognition was based on distributed ‘‘functional systems’’,
rather than components, and that these systems could
reorganize. More recently, Parallel Distributed Processing
(PDP) has taken up the pursuit of interactivity and emer-
gent structure as the foundation for cognition. PDP stresses
interactions among simple processing elements (e.g.,
microfeatures) and the emergent properties of such sys-
tems (e.g., Elman et al., 1996; Rumelhart, McClelland, &
the PDP Research Group, 1986). PDP networks begin with
a finite set of microfeatures, such as ‘‘has wings’’, ‘‘is yel-
low’’, and ‘‘can sing’’ for canary (e.g., McRae, Cree, Seiden-
berg, & McNorgan, 2005; Rogers & McClelland, 2004). The
emergent structure is limited to the interactions among
these microfeatures; thus, the use of microfeatures in
PDP may credit undue influence to components. Although
the combinatoric variety of emergence is somewhat lim-
ited in this case (Boogerd, Bruggeman, Richardson, Ste-
phan, & Westerhoff, 2005; Cariani, 1997), PDP serves as a
well-known example of an interaction-based account of
cognition.

2.1. Distinguishing component-dominance and interaction-
dominance

Cognitive scientists interested in the role of interactions
have gained new inspiration from work in statistical
mechanics on the properties of complex systems. Indeed,
even the PDP approach was significantly influenced by
work in physics and thermodynamics (Ackley, Hinton, &
Sejnowski, 1985; Hopfield, 1982, 1984). More recent com-
plex-systems perspectives on cognition have adopted
methods from complexity science in order to distinguish
component-dominant dynamics from interaction-domi-
nant dynamics in cognitive behavior. These methods in-
volve assessing the statistical distributions of system
behavior (Holden, Van Orden, & Turvey, 2009; Van Orden
et al., 2003). We now briefly describe one such method,
involving the test of a continuum of distributions. After
briefly reviewing the existing evidence of interaction-dom-
inance in cognition, we present new evidence of interac-
tion-dominant dynamics in three classic visual cognitive
tasks.

In order to use statistical mechanics techniques to dis-
tinguish between component-dominance and interaction-
dominance, we take a step away from cognitive issues for

a moment and consider the dynamics of random variables.
Random variables represent the components composing a
system and may assume a variety of values within an arbi-
trary domain. The behavior of the system depends on the
current value of the random variables and the relationship
that links them together. In a mathematical description,
the two basic relationships are addition and multiplication.
Hence, outcomes of system behavior are due to the addi-
tion or multiplication of random variables within the
system.

These two different mathematical relations lead to dif-
ferent distributions of outcomes. To illustrate this differ-
ence, let us consider a system whose outcomes depend
only on two random variables at a time, a and b. In the first
case, a and b are each independently selected from the do-
main and then added together. The resulting numbers
range from the sum of the two smallest possible values
of a and b to the sum of the two largest possible values
of a and b. After very many sums of pairs of random vari-
ables, the sums will tend to aggregate most heavily half-
way between the two extremes. The extremely small sums
and extremely large sums will both be rare compared to
the median sums. A plot of these frequencies would give
us a normal distribution. Most important for our purposes,
the role of each participating number is always the same:
to increase the sum by a specific amount. That is, addends
invariantly serve the same role, much like the parts in a
component-dominant theory of cognitive processes.

Now, consider the second case in which a and b are inde-
pendently selected as before but are now multiplied rather
than added together. As before with sums, the products
range from the product of the smallest pair of random vari-
ables to the product of the largest pair of random variables.
However, the landscape between these two extremes is
now quite different from the normal distribution. Specifi-
cally, the mode and median have shifted to lower values
and the tail has become longer: smaller products tend to
be more frequent than the larger products and the upper
limit on products is much higher than the upper limit on
sums. The frequencies of products are best described by a
lognormal distribution, a positively skewed curve with a
relatively thick tail (e.g., Limpert, Stahel, & Abbt, 2001). This
skewed result arises from the fact that the effect of multi-
plication depends nonlinearly on the values of the ele-
ments. Furthermore, the impact of one variable is not
independent of the impact of the other: Outcomes due to
either random variable can be radically different depending
on the current value of the other variable. Just like in an
interaction term for a regression, the magnitude of one ran-
dom variable’s effect will be moderated by the value of the
other (e.g., the effect of spelling-sound regularity depends
on word frequency: Seidenberg, Waters, Barnes, & Tanen-
haus, 1984; Taraban & McClelland, 1987). The behavior of
the system in this interaction-dominated situation depends
much more on context (i.e., the context of the other
variable).

Thus, the test between component-dominance and
interaction-dominance boils down to a distinction be-
tween additive and multiplicative distributions, respec-
tively. We now describe a continuum from pure
additivity/component-dominance to pure multiplicativi-
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ty/interaction-dominance (Holden et al., 2009; West &
Deering, 1995). This set of distributions is not exhaustive
(see Nakatani & van Leeuwen, 2008) but captures a broad
range of dynamics that might be found in cognition. We
describe this continuum in mathematical terms of graded
additivity and graded multiplicativity without a theoretical
view as to whether systems may fundamentally belong to
one or another distribution. At this point, whether cogni-
tive dynamics are additive or multiplicative and how the
distributions are influenced by context remain empirical
questions. Thus, we take an agnostic position and consider
the conventional range of possible distributions from vari-
ous mixtures of additivity and multiplicativity (Edwards
et al., 2007). For the purposes of illustration, Fig. 1 shows
the probability density functions (pdfs) for each distribu-
tion. In cases of strong skew, empirical distributions can
be difficult to distinguish visually. Logarithmically scaling
both axes can present a more easily legible picture; Fig. 2
shows the same pdfs as in Fig. 1, only on logarithmic axes.

2.1.1. Pure additivity: the normal distribution
The quintessential portrait of component-dominant

dynamics is the normal distribution (Figs. 1 and 2: top
row, left panel). The normal distribution arises when inde-
pendently-selected distinct components are added as de-
scribed above. Because distributions of observed behavior
are usually skewed (Andrews & Heathcote, 2001; Engbert,
Nuthmann, & Kliegl, 2007), the normal distribution serves
here only as the anchor for the remaining continuum of
distributions.

2.1.2. Skewed additivity: the gamma and exponential
distributions

Modest multiplicative distortion will turn a symmetric
additive model into a skewed distribution (Arellano-Valle,
Branco, & Genton, 2006). For example, the exponential
(Figs. 1 and 2) and the gamma distributions (Figs. 1 and
2: top row, middle and right panels) both reflect summa-
tions of independent components (Edwards et al., 2007;
Kendal, 2001). The exponential distribution exhibits
slightly greater skew. Both exponential and gamma distri-
butions are often used in models of reaction times (Luce,
1986; Miller & Ulrich, 2003) as well as fixation durations
(Engbert & Kliegl, 2001).

2.1.3. Multiplicativity among components: the lognormal
distribution

The lognormal distribution describes a normal distribu-
tion of logarithmically scaled values (Figs. 1 and 2: bottom
row, left panel). Whereas the normal distribution ex-
presses probability p as the sum of two random variables
a and b

p ¼ aþ b; ð1Þ

the lognormal distribution expresses the probability p as
the sum of logarithmically scaled random variables

p ¼ log aþ log b: ð2Þ

Because the sum of logarithms is equal to a logarithm of
the product:

p ¼ logða� bÞ; ð3Þ

Fig. 1. Probability distribution functions (pdfs) for continuum distributions described in the text. Top row depicts pdfs for additive distributions (i.e.,
normal, exponential, and gamma, from left panel to right panel). Bottom row depicts pdfs for multiplicative distributions (i.e., lognormal and inverse power
law, from left to right).
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the lognormal distribution arises from multiplicativity.
The lognormal distribution retains the independence of
individual components but reflects a constrained variety
of interaction-dominant dynamics (Farmer, 1990; Holden
et al., 2009). The increased multiplicativity is apparent in
the greater skew of the lognormal across x in Figs. 1 and
2 relative to the gamma and the exponential.

2.1.4. Multiplicativity with feedback: the (inverse) power–
law distribution

This most-skewed distribution is a multiplicative pro-
cess in which probabilities decay by a constant ratio (Figs.
1 and 2: bottom row, right panel; Montroll & Shlesinger,
1982). Power laws entail the weakest role for independent
components and the strongest role for interactions,
exhibited in the shallowest decay compared to other dis-
tributions. The dependence of random variables in the
power–law case can be considered a result of resonant
feedback dynamics. Under feedback dynamics, the occur-
rence of an event increases the probability that it will
occur again; that is, once a random value is selected, the
same (or similar) values for a random variable will be
selected multiple times in sequence. The power–law dis-
tribution arises due to exponentiation of random variables
(i.e., ab). Exponentiation relies on multiplication, but now
the elements that are multiplied are not independent:
small values are multiplied by small values and large val-
ues are multiplied by large values. Consequently, the range
of the products is amplified. Power laws have been found
in a variety of cognitive processes, from word naming
reaction times (Van Orden et al., 2003), to self-paced tap-
ping (Lemoine, Torre, & Delignières, 2006), to forgetting
curves (Anderson & Schooler, 1991).

In summary, normal distributions reflect pure addition
of independent variables, gamma and exponential
distributions reflect addition of independent variables with
slight multiplicative distortion, lognormal distributions
reflect multiplication of independent variables, and
power–law distributions reflect multiplication of non-
independent variables.

2.2. Cognitive behavior reflects interaction-dominant
dynamics

Recent evidence suggests that interactions dominate
cognitive behavior. For instance, variability in cognitive
tasks repeated over time may exhibit power–law struc-
ture. Specifically, variability over time may exhibit 1/f
noise, the power–law decay across frequencies in the
power spectrum. That is, response times oscillate over
long ranges, and the power (i.e., squared amplitude) of
these oscillations diminishes very slowly as the fre-
quency of these oscillations increases. This pattern has
been found in response times for mental rotation (Gil-
den, 2001) and word naming (Holden et al., 2009; Van
Orden et al., 2003). Speech appears to follow the same
pattern: syllable utterance duration, acoustic power of
vocalization at a variety of frequency bandwidths, and
intervals between turns taken in a conversational setting
all exhibit 1/f noise (Kello, Anderson, Holden, & Van Or-
den, 2008). In a set of findings convergent with the
power–law structure in 1/f noise, the aggregate pdfs of
response times in reading printed words aloud followed
power–law and lognormal distributions, as well as mix-
tures of these two distributions (Holden et al., 2009).
Task factors such as word ambiguity lengthened reaction

Fig. 2. Probability distribution functions (pdfs) on double-log plots. Top row depicts pdfs for additive distributions (i.e., normal, exponential, and gamma,
from left panel to right panel). Bottom row depicts pdfs for multiplicative distributions (i.e., lognormal and inverse power law, from left to right).
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times and shifted the distributions to be more like power
law than lognormal.

2.2.1. Interaction-dominance in visual cognition
Aks and colleagues have found similar results in visual

cognition. For instance, when participants looked at the
reversible figure commonly known as the Necker cube,
the time intervals between reversals (i.e., perceived
changes in the Necker cube’s orientation) exhibited 1/f
noise (Aks & Sprott, 2003). In order to manipulate depth
cues and duration viewing conditions, participants viewed
the Necker cube through red–blue anaglyph eyeglasses for
a variety of durations. The Necker cube was presented for
15, 30, or 60 min in red and blue contours offset by 0, 1,
2, and 4 s of visual arc. Stronger depth cues and briefer
viewing conditions increased the exponent of the power–
law decay in the power spectrum. In a visual search task
that required participants to find an upright ‘‘T’’ amidst ro-
tated ‘‘Ts,’’ Euclidean distances between consecutive gaze
positions (sampled at 500 Hz) exhibited 1/f noise (Aks,
Zelinsky, & Sprott, 2002).

Stephen, Mirman, Magnuson, and Dixon (2009) exam-
ined the dynamics of eye movements while participants
followed spoken instructions to click on one of four images
presented on a computer screen (i.e., the visual world par-
adigm, or VWP; Tanenhaus, Spivey-Knowlton, Eberhard, &
Sedivy, 1995). Eye movements were sampled at a relatively
coarse grain (50 Hz). The aggregate pdf of Euclidean dis-
tances between consecutive gaze positions was better fit
by a power–law distribution than by a gamma or exponen-
tial distribution. Such interaction-based, nonlinear dynam-
ics have been critical to previous – namely PDP – accounts
of visual search (e.g., Spivey & Dale, 2004) and VWP (e.g.,
Magnuson, Tanenhaus, Aslin, & Dahan, 2003).

Previous to Holden et al.’s (2009) inclusion of the log-
normal distribution, interaction-dominance in cognitive
tasks had been described largely in terms of power laws.
So far, there has been a similar reliance upon the power
law in tests of interaction-dominance in visual cognition
(Aks & Sprott, 2003; Aks et al., 2002; Stephen et al.,
2009). This focus on the power law has led to a dichoto-
mous view in which cognition is either interaction-domi-
nant (and fits the power–law distribution) or it is not. As
reviewed above, there is a potential continuum of interac-
tion dominance, and the lognormal distribution is a critical
point in that continuum that reflects interaction-domi-
nance under constraints, possibly from biological and
physical properties. Indeed, lognormal distributions often
appear to be more realistic models of biological and neural
dynamics than power–law distributions (Hyman et al.,
1995; Limpert et al., 2001; Qian & Bassingthwaighte,
2000).

2.3. The visual cognitive tasks

We examined where eye movement dynamics fall on a
continuum of interaction-dominance in three classic visual
cognitive tasks: two visual search tasks (e.g., Treisman &
Gelade, 1980) and the VWP. We examined distributions
of gaze steps: the Euclidean pixel distance displacements
between consecutive gaze positions sampled by an eye-

tracking device (as in previous studies: Aks & Sprott,
2003; Aks et al., 2002; Stephen et al., 2009). If cognitive
dynamics are interaction-dominant, the observed distribu-
tions of gaze steps should be better fit by power–law and
lognormal distributions than exponential and gamma
distributions.

We also examined how task differences influenced the
kind of distributions that unfold. The two visual search
tasks were quite similar in nature, requiring the participant
to search among distractors for a target that was distin-
guished by either a single visual feature or the conjunction
of two features. The consistency among the targets and the
distractors may constitute a constraint, pushing the system
toward additive distributions in eye movements. A VWP
task was chosen to be a considerably different visual cog-
nitive task: participants were asked to mouse-click the pic-
ture of an animal among a set of four pictures (one target
picture of an animal and three pictures of non-animal ob-
jects). The variety of targets (‘‘animal’’ for VWP vs. ‘‘O’’ or
‘‘green N’’ for feature and conjunction search) and distrac-
tors (non-animal objects vs. brown ‘‘Ns’’ and green ‘‘Xs’’)
was much greater in the VWP task than in the visual search
tasks. This wider variety of targets and distractors may
place weaker constraints on the participant’s eye move-
ments and thus allow greater interactivity to unfold in
their visual exploration, much like ambiguity (spelling-
pronunciation inconsistency) shifted distributions of read-
ing times closer to power–law functions (Holden, 2002).
Under this hypothesis, the distribution of gaze steps in
the VWP task should tend closer to power–law distribu-
tions than those in the visual search tasks.

3. Methods

3.1. Participants

Six participants completed the experiment as one op-
tion to fulfill a course requirement. All participants re-
ported normal or corrected-to-normal vision. Participants
gave informed consent as required by the Institutional Re-
view Board of the University of Connecticut.

3.2. Equipment and procedure

Participants were seated with their eyes approximately
2700 from a 2000 screen with 1024 � 768 resolution. Partici-
pants completed three tasks in counterbalanced order: two
search tasks (single-feature and conjunction) and one VWP
task. Gaze positions were recorded by a remote SR EyeLink
1000 eye-tracker at 500 Hz.

3.3. Visual search tasks

Participants completed 24 trials of each visual search
task. In the single-feature search task, participants had to
indicate whether or not the letter ‘‘O’’ was present among
distractors that were letters ‘‘N’’ and ‘‘X’’. In the conjunc-
tion search task, participants had to indicate whether or
not a green letter ‘‘N’’ was present among distractors that
were green ‘‘X’s’’ and brown ‘‘N’s’’. There were six trials
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for each set size (1, 5, 15, and 30 letters), and the target let-
ter was present in half of the trials.

3.4. VWP task

Participants completed 30 trials of the VWP task.
Participants were instructed at the start of the block to
mouse-click on the image of an animal in each display.
Each display consisted of images of three common non-
animal objects (e.g., jukebox, mug, plum) and one image
of an animal (e.g., gorilla). Each of the four images was dis-
played near one of the screen corners and the position of
each image was randomized.

3.5. Data analysis

Traditional inferential statistical tests (t-test and ANO-
VA) were used for behavioral data analysis. For distribution
fitting, we used the MATLAB Statistics Toolbox for maxi-
mum likelihood (ML) estimation. Whereas ordinary least-
squares (OLS) evaluates model fit with r-squared, ML
evaluates model fit with log-likelihood. For a candidate
distribution, ML estimation fits parameters that maximize
log-likelihood. The candidate distribution with the highest
log-likelihood is taken to be the best-fitting distribution
(Edwards et al., 2007; Sims et al., 2008). Of course, empir-
ical data are unlikely to conform precisely to any model
distribution; rather, we define a sample of candidate distri-
butions and take the best-fitting (that is, most likely) dis-
tribution to be the best approximation of the empirical
data (Burnham & Anderson, 2002; Schunn & Wallach,
2005). If the best-fitting distribution is additive, this is evi-
dence of component-dominance. If it is multiplicative, it is
evidence of interaction-dominance. The relative goodness-
of-fit of one distribution over another is expressible by the
difference in log-likelihoods of the distributions in ques-
tion.1 Because the difference of logarithms equals the log-
arithm of a ratio (i.e., log(b) � log(c) = log(b/c)), this
difference in log-likelihoods is called the log ratio (Singer
& Willett, 2003).

4. Results

4.1. Behavioral results

4.1.1. Accuracy
All six participants completed all tasks at 87.5% accu-

racy or higher, and the differences in accuracy among par-
ticipants were not statistically reliable, F(2, 15) = 2.39,
p > .05. (see Table 1).

4.1.2. Reaction time
Reaction times were not significantly different between

the VWP task and the visual search tasks, t(12) = .10,
p > .05. For the visual search tasks, there were main effects

of task, F(1, 5) = 39.67, p < .01, and set size, F(3, 15) = 45.11,
p < .0001, and a significant interaction of task with set size,
F(3, 15) = 20.66, p < .0001. Fig. 3 shows the mean reaction
times for each participant across the two different visual
search tasks. The interaction reflects the strong effect of
set size on conjunction-feature search and relatively weak
effect of set size on single-feature search – a replication of
the classic visual-search result (e.g., Treisman & Gelade,
1980).

4.2. Relative likelihood estimation

4.2.1. Gaze step size
Gaze steps for the VWP task (M = 2.45, SE = .14) were

marginally (F(2, 10) = 3.73, p = .06) larger than for the sin-
gle-feature search task (M = 1.98, SE = .35) or the conjunc-
tion search task (M = 1.84, SE = .23).

4.2.2. Probability distribution functions
Figs. 4–6 show empirical pdfs by participant for the

VWP task, the single-feature search task, and the conjunc-
tion search task, respectively. Logarithmic axes are used for
ease of visualization.

4.2.3. Basic model fits
We tested the model fit of exponential, gamma, lognor-

mal, and power–law distributions to the distributions of
gaze steps for each task. Table 2 shows the log-likelihood
for each fit by task and by participant. Higher log-likeli-
hood indicates better model fit. For the VWP task, one par-
ticipant exhibited power–law-distributed gaze steps, and
five participants exhibited lognormal-distributed gaze
steps. For visual search, gaze steps were all lognormal-dis-
tributed. These multiplicative distributions of eye move-
ments suggest that interactions dominate cognition in
these tasks. Fits for the four distributions tested are shown
on the same axes as empirical pdfs in Figs. 4–6: lognormal
and power–law distributions were better fits than gamma
and exponential distributions. Often, the best fitting log-
normal and power–law distributions were quite similar
on simply visual inspection.

4.2.4. Task differences
The distributions of gaze steps were influenced by task,

suggesting that they were not simply generic products of
oculomotor dynamics. We examined the log ratio between
lognormal and power–law fit to reveal how task influenced
the dynamics of eye movements.

Fig. 7 shows that the difference in log-likelihoods favor-
ing lognormal over power–law fit was significantly lower
in the VWP task (M = 610.01, SE = 240.34) than in either
the single-feature search task (M = 2259.10, SE = 519.48)
or the conjunction search task (M = 2433.67, SE = 437.10).
An F-test comparing these differences in average log-likeli-
hood by task was significant, F(2, 10) = 11.37, p < .01. That
is, relative to visual search, the cognitive dynamics under-
lying performance in the VWP task were closer to power–
law. Far from being an outlier, Participant 1 reflected a
general tendency for gaze-step distributions to move to-
wards power–law structure in the VWP task. This result
is consistent with the hypothesis that cognitive behavior

1 Although the use of ML estimation and log-likelihood comparisons is
common to other analyses such as generalized and mixed linear models
(Breslow & Clayton, 1993; Singer & Willett, 2003), the likelihood ratio test
for distribution-fitting reported here is a distinct analysis used for
statistical mechanics.
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appears more interaction-dominant when performing a
less constrained task.

The distributions were equally lognormal for both
single-feature and conjunction search (t(4) = .257,

p > .40), consistent with interactive models that propose
the same underlying process for both types of search
(e.g., Spivey & Dale, 2004), rather than componential
models that propose fundamentally different processes

Fig. 3. Plots of reaction times by set size for each participant in Treisman and Gelade (1980) search tasks. The bottom curve on each set of axes indicates
reaction times in the single-feature search; the top curve on each set of axes indicates reaction times in the conjunction search.

Fig. 4. Empirical probability distribution functions (pdfs) of gaze steps in the visual world paradigm (VWP) task by participant on double-log plots.
Distribution fits are shown for inverse power law (dashed black curve), lognormal (solid black curve), gamma (solid gray curve), and exponential (dashed
gray curve).
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(e.g., Treisman & Gelade, 1980). Note also that the hea-
vier tail of a power–law distribution would produce the

slightly larger average gaze step size found for VWP
than visual search.

Fig. 5. Empirical probability distribution functions (pdfs) of gaze steps in the single-feature search task by participant on double-log plots. Distribution fits
are shown for inverse power law (dashed black curve), lognormal (solid black curve), gamma (solid gray curve), and exponential (dashed gray curve).
Lognormal and inverse power–law fits for participants 1 and 4 are sufficiently close to one another that the lognormal curve eclipses the inverse power–law
curve.

Fig. 6. Empirical probability distribution functions (pdfs) of gaze steps in the conjunction search task by participant on double-log plots. Distribution fits are
shown for inverse power law (dashed black curve), lognormal (solid black curve), gamma (solid gray curve), and exponential (dashed gray curve). As in
Fig. 5, lognormal and inverse power–law fits for Participants 1 and 4 are sufficiently close to one another that the lognormal curve eclipses the inverse
power–law curve.
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5. Discussion

The present research examined the dynamics of the
cognitive system during three visual cognitive tasks. The
distributions of gaze steps were best fit by lognormal or
power–law distributions, which is consistent with the

hypothesis that cognitive dynamics are interaction-domi-
nant. We also found task-specific differences in the shape
of gaze-step distributions, indicating that task differences
shifted cognitive dynamics along a continuum of interac-
tion-dominance between lognormal and power–law distri-
butions, consistent with previous work suggesting that the
apparent degree of interaction-dominance depends on task
constraints (Aks & Sprott, 2003; Kello et al., 2008). These
findings of lognormal distributions in gaze steps and
task-modulation of distribution shape provide new evi-
dence of system-wide interactivity in visual cognition.

5.1. Interactions appear to dominate the dynamics of visual
cognition

The classic description of visual perception and cogni-
tion rests on a componential division of labor. Light hits
the retina, progresses through a sequence of ever more ab-

Table 1
Accuracy by participant and by task.

Participant Task

VWP (%) Simple-feature (%) Conjunction (%)

1 100.00 87.50 100.00
2 100.00 100.00 95.83
3 100.00 95.83 87.50
4 100.00 95.83 91.67
5 100.00 100.00 100.00
6 100.00 100.00 100.00

Table 2
Log-likelihoods for model fits of gamma, exponential, Pareto (power law), and lognormal distributions.

Participant Task Gamma Distribution Pareto

Exponential Lognormal

1 VWP �38312.27 �50889.10 27925.59 �27532.58�

S–F �25010.68 �31945.15 �10978.22� �12496.94
Conj. �19414.35 �28503.78 �3140.16� �4973.41

2 VWP �50987.68 �57705.02 �39835.88� �40853.14
S–F �65568.10 �70883.54 �48376.19� �51439.16
Conj. �58913.71 �62164.20 �44955.34� �48016.11

3 VWP �48481.12 �54565.41 �35671.84� �36997.10
S–F �68171.09 �76503.19 �49796.42� �52119.44
Conj �63501.46 �68963.30 �47271.86� �49988.98

4 VWP �20099.90 �23791.34 �13920.05� �14375.34
S–F �50106.03 �59003.13 �24100.57� �28385.39
Conj. �45057.44 �54031.50 �19867.38� �23923.36

5 VWP �48844.32 �57470.51 �36892.35� �37408.63
S–F �62020.48 �74280.42 �41675.59� �43407.09
Conj. �38120.47 �45336.28 �24246.53� �25622.05

6 VWP �59391.24 �78970.37 �35907.80� �36646.79
S–F �72909.36 �96165.02 �42515.25� �44195.32
Conj. �69789.61 �97055.82 �42278.09� �42790.18

Fig. 7. Log-ratios between indicating the relative strength of lognormal fit to power–law fit. The single-feature and conjunction search tasks indicate similar
log-ratios. Although the gaze steps elicited by the VWP task were still predominantly lognormal, the gaze steps tended closer towards power–law fit.
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stract levels of processing that elicit the intention to shift
gaze, and this intention is then executed by the peripheral
oculomotor system. Under a strictly componential view,
information from these different levels would be combined
in an additive manner, eventually producing an additive
distribution of eye-movements indicative of component-
dominant processing. There is, however, tremendous
evidence of interactivity in the visual system: from extra-
classical receptive fields (e.g., Angelucci et al., 2002) to
visual illusions (e.g., Lee & Nguyen, 2001) to context effects
on object recognition (e.g., Bar, 2004). Interaction-domi-
nant dynamics suggest a major departure from the classic
description. Under interaction-dominant dynamics, the
structure of the cognitive system is emergent and the orga-
nization is fluidly dependent on the ongoing flow of infor-
mation through the system. The individual parts of the
visual system assume functions and relationships that
may change dramatically depending on context.

Borrowing analytical techniques from statistical
mechanics and complexity science, we present a different
perspective on components and interactions in cognitive
systems. A system of stable, independent components –
as described in traditional cognitive science theories, par-
ticularly those that emphasize modularity (e.g., Coltheart,
1999; Dietrich & Markman, 2003; Fodor, 1983; Marr,
1982; Wagenmakers et al., 2004) – would produce additive
normal distributions of behavior. A system of relatively
stable but highly interactive components would produce
multiplicative lognormal distributions; and an interactive
system with broad interdependence and feedback among
components would produce power–law distributions. The
present findings of lognormal and power–law distributions
and task sensitivity in eye movement dynamics suggest
that cognition (at least visual cognition) is dominated by
interactive processes and emergent structure. This view
is closely related to perspectives in which cognition is an
emergent property of interactions of simple processing
components rather than the sum of independent sub-
systems.

It is important to stress the conceptual distance be-
tween empirical and theoretical distributions. Although
lognormal distributions were generally the best-fitting dis-
tribution, there were small but systematic departures of
the empirical distributions from the best-fitting theoretical
distributions. The peaks fell short of the fitted curves (i.e.
to the left), and the extreme ends of the tails tended to
sprawl above and beyond the fitted curves (i.e., to the
right). First, there is no guarantee that an empirical distri-
bution will be fit perfectly by any theoretical distribution
(Schunn & Wallach, 2005). Second, if we permit the possi-
bility that the cognitive system may exhibit behavior fall-
ing along a continuum of distributions, there must
necessarily be mixtures of distributions as the cognitive
system moves from one mode to another. It is possible
that, as Holden et al. (2009) found in distributions of re-
sponse time, these distributions of gaze steps are mixtures
of power–law and lognormal functions. We were inter-
ested only in demonstrating the generally interaction-
dominated structure. Future work might investigate the
relative advantage of such mixtures, with the caveat that
systems whose dynamics generally reflect multiplicativity

may not simply be the added sum of two multiplicative
distributions but may involve multiplications of constitu-
ent distributions.

5.2. Interactivity and strategies for computational models of
cognition

An emphasis on emergent structure is found in a range
of theories of cognitive processing, particularly those that
fall within the PDP framework. Interactivity and nonlinear
(multiplicative) processing are central principles in the
PDP framework (e.g., McClelland, 1993) and one critical
motivation for the development of PDP models of cogni-
tion has been to provide an account of cognition in which
structure is emergent rather than stipulated (e.g., McClel-
land, Plaut, Gotts, & Maia, 2003). Although these models
have typically been applied to task-specific performance
scores, the approach we have taken here examined fine-
grained (i.e., densely sampled, at 500 Hz) dynamics of
eye-movements and yielded new evidence of interaction-
dominance in visual cognition.

Despite the shared theme of interactivity, interaction-
dominant dynamics makes a few substantial departures
from the PDP approach. For instance, the framework of
interaction-dominant dynamics is purposefully agnostic
about specifying a preexisting architecture. The reason
for this agnosticism is the very point that interaction-dom-
inated systems are inherently context specific: architec-
ture will evolve based on the flow of information. In the
PDP framework, a baseline or input/output structure is
specified and the focus is on the emergent mediating (often
called ‘‘hidden level’’) structure. Interaction-dominant
dynamics take this one step further to allow the architec-
ture itself to emerge. Information flow stirs a structurally
uncommitted system into an orchestra of sub-systems
and parts. In this sense, interaction-dominant approaches
are slightly more similar to computational modeling in li-
quid state machines (LSMs; Maass, Natschläger, & Mark-
ram, 2002). Whereas PDP networks are built to solve
specific tasks, LSMs are neural nets that are built without
predesigned functions or predetermined networks of con-
nectivity between nodes (Morse & Aktius, 2009). Nodes
in LSMs are connected randomly but recurrently, prone
to any of a wide number of possible large-scale nonlinear-
ities in the presence of activation. The architecture is
uncommitted, and the flow of activation (i.e., information)
governs the coordinations between nodes.

5.3. Concluding remarks

A componential division of labor would predict additive
distributions and no modulation by task (e.g., oculomotor
control mechanisms independently executing cognitive
commands). Component-dominant theories describe cog-
nition as the driver at the wheel of a biological automobile:
the fine-grained mechanics of the engine, the valves, and
the wheels remain the same no matter the destination,
and the driver only changes the broader scales of dynam-
ics. In contrast, we found multiplicative distributions and
modulation by task. That is, cognition extended far beyond
the intentional, abstract levels of processing – even the
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biological nuts and bolts of motor periphery showed sensi-
tivity to task. These results indicate that cognition is
broadly distributed over many anatomical scales and that
looking behavior is an emergent property of the entire
system.
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