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A B S T R A C T

Voxel-based lesion-symptom mapping (VLSM) is an important method for basic and translational human neu-
roscience research. VLSM leverages modern neuroimaging analysis techniques to build on the classic approach of
examining the relationship between location of brain damage and cognitive deficits. Testing an association
between deficit severity and lesion status in each voxel involves very many individual tests and requires sta-
tistical correction for multiple comparisons. Several strategies have been adapted from analysis of functional
neuroimaging data, though VLSM faces a more difficult trade-off between avoiding false positives and statistical
power (missing true effects). We used simulated and real deficit scores from a sample of approximately 100
individuals with left hemisphere stroke to evaluate two such permutation-based approaches. Using permutation
to set a minimum cluster size identified a region that systematically extended well beyond the true region,
making it ill-suited to identifying brain-behavior relationships. In contrast, generalizing the standard permu-
tation-based family-wise error correction approach provided a principled way to balance false positives and false
negatives. Comparison with the widely-used parametric false discovery rate (FDR) correction showed that FDR
produces anti-conservative results at smaller sample sizes (N = 30–60). An implementation of the continuous
permutation-based FWER correction method described here is included in the lesymap package for lesion-
symptom mapping (https://dorianps.github.io/LESYMAP/).

1. Introduction

Identifying relationships between location of brain damage and
cognitive deficits is a foundational method in cognitive neuroscience,
tracing its history at least to the behavioral neurologists of the mid-19th
century (e.g., Lichtheim, 1885). Those early studies were based on in-
dividual case studies and, as data accumulated, researchers used lesion
overlays to identify the locations where damage consistently produced
deficits of interest. Recent advances in neuroimaging technology have
allowed much finer-grained analyses at the level of individual voxels
(Bates et al., 2003; Rorden and Karnath, 2004). In voxel-based lesion-
symptom mapping (VLSM), an association between deficit severity and
lesion status (lesioned vs. not lesioned) is tested in each voxel, produ-
cing a statistical map of the strength of relationship between lesion
status and deficit. However, this map is the result of individual tests
across tens or even hundreds of thousands of voxels.

The large number of tests involved in analysis of neuroimaging data

requires some kind of statistical correction for multiple comparisons.
Several strategies have been proposed, often by adaptation from ana-
lysis of functional neuroimaging (e.g., fMRI). One standard strategy of
correction for multiple comparisons is to control voxel-level family-wise
error rate (FWER), which is the probability of making one or more false
positive (Type 1) errors among the entire set of tests. The Bonferroni
correction is a classic FWER correction method, though it is generally
considered overly conservative for neuroimaging data. An alternative,
non-parametric, approach to FWER correction is to use permutations of
the observed data to build a null distribution of test statistics and
compare the observed test statistic against that null distribution to
determine the likelihood of observing the result if the null hypothesis
were true. Because it is based on permuting the real data, this approach
has the important advantage of not making assumptions about the
distributions of scores or test statistics – assumptions that are likely to
be violated by skewed distributions of behavioral deficit (symptom)
scores and by the spatial contiguity inherent to stroke lesions. Building
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a null distribution based on permutations of real data offers a rather
literal way to compute p-values: the p-value is literally the probability
of observing a particular outcome if there were no relationship between
the behavioral scores and lesion patterns (i.e., random permutations). A
null distribution of the test statistic can be built based on permutations
of real data and used to reject voxels where the true analysis does not
sufficiently differ (e.g., >p 0.01) from the permutation-based null dis-
tribution to warrant rejecting the null hypothesis (e.g., Kimberg et al.,
2007; Rorden et al., 2007).

Controlling the probability of making one or more false positive
errors is based on the idea that each test is critically related to the
researcher's interpretation or inference, thus, a single false positive
could potentially undermine the inference and needs to be controlled.
Voxel-level FWER does not align with VLSM interpretation, which
never depends on a single voxel. The misalignment between standard
FWER correction and VLSM interpretation makes standard voxel-level
FWER correction unnecessarily conservative: if no inferences are made
based on a single voxel, then a single false positive voxel cannot be
responsible for an invalid inference about lesion-symptom relations.

The general approach of permutation-based correction for multiple
comparisons can be implemented in many different ways, depending on
what aspect of the results is to be controlled. Instead of controlling the
rate of a single false positive voxel, permutation-based FWER can be
used to set a minimum cluster size, thus controlling the rate of a single
false positive cluster of voxels. Setting a minimum cluster size is a
common “clean-up” step in neuroimaging data analysis; the addition of
a principled strategy for selecting the minimum cluster size is the cri-
tical component that turns this into a statistical correction method. The
permutation-based strategy is to set a voxel-wise cluster-forming
threshold (e.g., <p 0.0001), then use permutations to determine the
null distribution of cluster sizes that pass this threshold, and use that
distribution to set a minimum cluster size (e.g., Nichols and Holmes,
2002). This approach is appealing because stroke lesions are inherently
contiguous and VLSM interpretation tends to focus on clusters.

Another technique for controlling the rate of false positives is False
Discovery Rate (FDR), which quantifies the proportion of above-
threshold results that can be expected to be false positives (Genovese
et al., 2002). That is, at FDR threshold =q 0.05, 5% of above-threshold
voxels are expected to be false positives, which is likely to be sub-
stantially more than one voxel but not likely to affect interpretation of
the overall patten (for a clear description see Bennett et al. 2009). FDR
is widely used for analysis of functional neuroimaging data and VLSM,
however, we have encountered informal criticism that FDR is in-
appropriate for VLSM. FDR is certainly less conservative than FWER
(see also Rorden et al., 2007), but that is true by design – FDR is de-
signed to allow a small percentage of false positive voxels, whereas
FWER aims to make it unlikely that there is even a single false positive
voxel – and we are not aware of any published analysis showing that
FDR incorrectly quantifies the rate of false positive voxels in VLSM.

Correction for multiple comparisons is an attempt to manage
variability, but it cannot remove all of the noise and leave all of the
signal. Either some noise will get left behind or some of the signal will
be removed. That is, there is an inherent trade-off between false posi-
tives and false negatives; incorrectly generalizing a result and over-
looking a generalization that is warranted. By convention, data analysis
requires setting a threshold to identify results that warrant rejection of
the null hypothesis. There is a substantial price associated with
adopting the conservative position that the probability of even a single
false positive voxel needs to be controlled: VLSM analysis is based on a
single data point per participant (each participant only has one lesion
and only one deficit profile) and sample sizes are often limited by the
practical challenges of recruiting and testing large numbers of partici-
pants with the targeted neurogenic deficits. This price is further ex-
acerbated by publication bias: studies that meet the statistical threshold
may be published, but studies that fall short are relegated to the “file
drawer”, leaving a biased scientific literature. Publication bias also

encourages various forms of “p-hacking” or “researcher degrees of
freedom”, in which researchers try alternative analysis strategies (ex-
cluding certain “outlier” participants, transforming scores, etc.) until
they find one that surpasses the statistical threshold. The result is a
report that appears to use rigorous statistical methods, but the actual
rate of false positives far exceeds the nominal p-value (e.g., Simmons
et al., 2011; Nosek et al., 2012; Gelman and Loken, 2014). In addition
to statistical soundness, the analytical strategy should allow researchers
to transparently report their observations and the strength of the evi-
dence that supports their conclusions.

The present study investigated two permutation-based methods of
correcting for multiple comparisons in VLSM. The next section de-
scribes our investigation of using permutations to determine a
minimum cluster size. Our analyses found that this approach produces
consistent spill-over into neighboring regions (i.e., the identified region
extends well beyong the boundaries of the true lesion-symptom rela-
tion), making it not well-suited to identifying brain-behavior relation-
ships. Although some spill-over is a necessary consequence of high
spatial correlations among neighboring voxels inherent to stroke lesion
data, cluster-based correction was substantially more susceptible to this
problem than standard voxel-level FWER correction. The subsequent
section describes a generalization of the permutation-based FWER
correction approach that captures some of the inferential advantages of
FDR and cluster-based correction without making parameteric as-
sumptions about the data. This approach makes it possible to balance
control of false positives against risk of false negatives, and to trans-
parently report results in a way that allows others to evaluate the evi-
dence. We also compare this approach with the parametric FDR method
and describe conditions under which FDR may produce misleading
results. The final section of this report summarizes our findings and
conclusions, and discusses future directions.

2. Minimum cluster size

Using permutations to determine a minimum cluster size proceeds
as follows: (1) permute behavioral data and conduct VLSM analysis, (2)
apply a pre-set cluster-forming threshold for each voxel (e.g.,

<p 0.0001), (3) compute size of largest supra-threshold voxel cluster,
(4) repeat steps 1–3 many times to build up a null distribution of supra-
threshold cluster sizes (e.g., Nichols and Holmes, 2002). This null dis-
tribution is the distribution of largest cluster sizes that are observed
when there is no relationship between deficit scores and lesion location.
Clusters from the original (true) VLSM analysis that are larger than 95%
of the null distribution of cluster sizes are taken to reflect true lesion-
symptom associations (for examples of application to VLSM see Pillay
et al. (2014, 2017), Binder et al. (2016), Mirman et al. (2015a)). This
strategy involves two separate thresholds: the first is a pre-set voxel-
level p-threshold; the second is a permutation-based cluster size
threshold. This strategy has two intuitively appealing properties. First,
strokes and other neurological disorders tend to produce spatially
contiguous lesions, resulting in high spatial correlations between the
lesion status of neighboring voxels. Using permutation to determine a
null distribution of cluster sizes intuitively controls for this spatial
correlation and produces a minimum cluster size threshold that should
not be observed by chance. Second, it is typical for interpretation of
VLSM (and other neuroimaging) results to focus on clusters, so cor-
recting at the cluster level (rather than the voxel level) makes this
statistical strategy more closely aligned with the interpretation strategy.
In the following analyses we examine this permutation-based cluster-
size correction strategy for detecting true lesion-symptom relations.

2.1. Data

The lesion maps were from 124 participants with aphasia following
left hemisphere stroke confirmed by computed tomography (CT) or
magnetic resonance imaging (MRI) and collected as part of a larger,
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ongoing project investigating the anatomical basis of psycholinguistic
deficits in post-acute aphasia.1 The structural data were based on 108
research scans (65 MRI and 43 CT) and 16 clinical scans (5 MRI and 11
CT). Lesions imaged with MRI were manually segmented on the
structural image by a trained technician and reviewed by an experi-
enced neurologist, then registered first to a custom template con-
structed from images acquired on the same scanner, and then from this
intermediate template to the Montreal Neurological Institute space
“Colin27” volume. Lesions imaged with CT were drawn by the experi-
enced neurologist directly onto the Colin27 volume, after rotating
(pitch only) the template to approximate the slice plane of the patient's
scan. Fig. 1 shows the lesion overlap map for these 124 lesion maps,
which have been used in VLSM analyses reported elsewhere (Mirman
et al., 2015a, 2015b). Following best practices in VLSM analysis, only
voxels where more than 10% of participants had lesions were included
(338,831 voxels) and the analyses controlled for overall lesion volume
(Sperber and Karnath, 2017; Zhang et al., 2014).

In order to have a deficit score with a known neural correlate, we
calculated the percent damage in two brain regions that are widely-
studied and frequently damaged in middle cerebral artery stroke
aphasia: BA 45 and BA 39. An effective statistical correction strategy
should approximately identify these areas; that is, damage in BA 45
should be the “neural correlate” of percent damage in BA 45. Effects in
these areas may be vulnerable to mis-localization in VLSM (Mah et al.,
2014), though this issue is substantially reduced in more realistic
analyses that control for etiology and overall lesion size, and only test
voxels that are affected in a reasonable number of participants (Sperber
and Karnath, 2017), as we do here.

2.2. Analysis strategy

For each of the simulated deficit (percent damage) scores, we con-
ducted a basic VLSM, applied a pre-set threshold, then calculated the
size of the largest supra-threshold voxel clusters. We then repeated this
analysis 1000 times, permuting the deficit scores for each repetition to
create a random association between the scores and lesion profiles. The
cluster sizes from the permutations were used to set a 95% threshold
(i.e., larger than 95% of permutation-based clusters) for the original
VLSM data. These analyses were carried out in R version 3.3.1 (R Core
Team, 2016) using the ANTsR package version 0.3.3 (Avants et al.,
2016) and the LESYMAP package (Pustina et al., 2017).

Four different pre-set thresholds were tested within the same set of
1000 permutations: 0.05, 0.01, 0.001, 0.0001. This covers the range
from the most permissive threshold (0.05) to a reasonably conservative
threshold (0.0001) for initially identifying voxels for subsequent cluster
size correction. The more permissive thresholds will allow more voxels
into the cluster size calculation, which should produce larger clusters.
Therefore, there should be a positive correlation between the pre-set p-

threshold and the permutation-based cluster size threshold. This posi-
tive correlation is an inverse strictness relationship: more permissive p-
thresholds produce more conservative cluster size thresholds. One
motivation for this study was to examine how one might balance these
inversely related factors for optimal VLSM interpretation and inference.

2.3. Results

As expected, there was a positive relationship between cluster size
threshold (95th percentile of maximum cluster sizes across 1000 per-
mutations) and p-threshold (Fig. 2): more permissive p-thresholds allow
more voxels into the cluster analysis, thus producing larger clusters.
Indeed, the relationship is almost perfectly linear in the log-log plot in
Fig. 2. The next stage was evaluating how well this method recovers the
true neural correlates for each deficit score. The two less conservative p-
thresholds produced extremely large cluster thresholds: more than
20,000 voxels at <p 0.05 and more than 6500 voxels at <p 0.01. Any
clusters of that size or larger would not be neuroanatomically specific
enough to provide useful insights into lesion-symptom relationships.

The top row in Fig. 3 shows the results of permutation-based cluster
size correction (at voxel-wise <p 0.001 and <p 0.0001, and family-wise
cluster size <p 0.05) for simulated deficit scores of percent damage in
BA 45 and BA 39. The identified region expands beyond the bounds of
the true region, covering an area that is approximately twice the size of
the Brodmann Area where percent damage was used as the behavioral
score. For comparison, the middle row in Fig. 3 shows the same VLSM
analyses thresholded using permutation-based FWER correction
( <p 0.05) based on the maximal test statistic in each permutation, and
the bottom row shows the actual regions as defined in the Brodmann
Area atlas. The FWER correction did a substantially better job of
identifying the critical regions, with about 25–50% fewer voxels sur-
viving correction.

2.4. Discussion

We explored the use of a permutation-based approach to determine
a minimum cluster size threshold for statistical correction of VLSM. This
approach is adapted from analysis of functional neuroimaging data
(Nichols and Holmes, 2002) and has been previously used in VLSM
(Pillay et al., 2014, 2017; Binder et al., 2016; Mirman et al., 2015a).
Using structural lesion data from 124 participants with left hemisphere
stroke, we constructed deficit scores using percent damage in BA 45 and
BA 39. As expected, there was a positive relationship between pre-set p-
threshold and the resulting cluster thresholds: more permissive p-
thresholds allow more voxels into the cluster analysis, thus producing
larger clusters. As a result, a less conservative cluster-forming p-
threshold will produce larger - and less anatomically precise - cluster(s)
in the final results.

This cluster-based correction correctly identified the critical BA
regions, but the supra-threshold clusters extended well beyond the
boundaries of the correct BA regions. This pattern suggests that the
permutation-based cluster size approach can correctly reject cases in

Fig. 1. Lesion overlap map for 124 left hemisphere stroke cases included in the present analyses. Hotter colors indicate that a larger proportion of the participant sample had lesions in
that area.

1 That project was funded by National Institutes of Health grant R01DC000191 to
Myrna F. Schwartz and we are grateful to Dr. Schwartz and her team for sharing these
data with us to make these analyses possible.
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which there is no consistent relationship between behavioral score and
lesion location, but it appears to be insufficiently spatially specific when
a true relationship exists. If a lesion-symptom relationship does exist,
this method will detect the correct region, but spatially contiguous
regions will also be included in the critical cluster. To some degree, this
spill-over is a necessary consequence of the high spatial correlation
inherent in stroke lesion data, and the quite strong relationship between
our simulated deficit scores (percent damage) and their corresponding
brain regions. Even the more conservative permutation-based FWER
method had some spill-over into adjacent regions, although it was
substantially less than the cluster-based method. The cluster-based
method may be particularly vulnerable to spill-over resulting from
spatial correlations precisely because it looks for clusters of voxels.
Consider a voxel that is just outside the critical region, but that has a
moderately high spatial correlation with voxels inside the critical re-
gion; that is, when voxels inside the critical region are lesioned, it is
also often lesioned, and when they are not, it is also usually not le-
sioned. This adjacent voxel will have a moderate lesion-symptom as-
sociation due to its correlation with the critical voxels, but will it sur-
vive correction? Under the FWER method, that association must be
stronger than 95% of the maximal associations in the permutations –
the same as any other voxel in the analysis. Under the cluster-based
method, it only has to be stronger than the pre-set cluster-forming p-
threshold. In other words, unlike the FWER method, under the cluster-

based method, adjacent voxels have a much weaker threshold than non-
adjacent voxels, thus exacerbating the spill-over effect.2 That is, the
cluster-based method is least able to reject false positives in the area
where they are most likely to occur – adjacent to the critical (true po-
sitive) region.

Although permutation-based FWER out-performed cluster-based
correction in these analyses, percent damage is a very strong relation-
ship and, as discussed in the Introduction, this FWER method is very
conservative because it controls the possibility of a single false-positive
voxel. This single-voxel standard does not align with how VLSM results
are interpreted and this conservatism carries real costs for scientific
progress. In the next section we explore a generalization of this ap-
proach that allows balancing false positives against false negatives and
transparently reporting the evidence. In the process, we also evaluate
the FDR correction method against permutation-based FWER methods.

3. Continuous permutation-based FWER

The standard permutation-based FWER correction method proceeds
as follows: (1) permute behavioral data and conduct VLSM analysis, (2)

identify the maximal test statistic (typically, the most extreme t-value),
(3) repeat steps 1 and 2 many times to build a null distribution of
maximal t-values, (4) compute the n-th percentile of that null dis-
tribution to determine a threshold for the test statistic, which corre-
sponds to n% of the permutations having 0 voxels that exceed this
threshold (Rorden et al., 2007). A typical value of n is 95, which pro-
duces a FWER-corrected <p 0.05: less than 5% of the permutations had
even a single voxel that exceeded this t-threshold.

This approach controls the rate of single-voxel false positives, but it
can be generalized to multi-voxel false positives by focusing on the v-th
most extreme test statistic.3 The standard strategy is the special case
when =v 1, thus using the most extreme voxel-wise test statistic from
each permutation, and controlling the rate of 1 false positive voxel. If,
for example, =v 10, one would similarly use the 10th most extreme
voxel-wise test statistic from each permutation, and control the rate of
up to 10 false positive voxels. An example is shown in Fig. 4 where the
left panel shows the sorted t-values from the first 10 permutations and
the right panel shows permutation-based t-value distributions and 95%

Fig. 2. Cluster size thresholds based on largest cluster from each permutation at each p-
threshold. Note that both axes are logarithmically scaled.

Fig. 3. Results of VLSM analysis of percent damage to BA 45 and BA 39. Top row shows results thresholded using permutation-based cluster size correction ( <p 0.05). The primary
clusters (red for BA45, green for BA39) are based on voxel-wise <p 0.0001, the additional voxels (blue for BA45, purple for BA39) are included when the voxel-wise threshold is

<p 0.001. Middle row shows results thresholded using voxel-wise permutation-based FWER at <p 0.05 (BA45 in red-yellow, BA39 in blue-green). Bottom row shows the true regions:
BA45 and BA39 as defined in the Brodmann Area atlas (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

2 An exception is the special case where the pre-set cluster-forming p-threshold is
equivalent to the FWER threshold, but that would render the cluster-based correction
unnecessary.

3 In the statistical literature, controlling for some number k of false positives is also
known as k-FWER control (e.g., Romano and Wolf, 2007).
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thresholds at =v 1 (red), =v 10 (green), =v 100 (blue), and =v 1000
(purple). A single set of permutations produced the set of possible 95%
thresholds at different critical voxel (v) values, reflecting the expected
number of false positive voxels at the corresponding t threshold. Not
surprisingly, that t threshold decreases as the v value increases, but the
relationship remains the same as the standard FWER case: the v value
specifies the maximum number of voxels that exceeded the corre-
sponding t-threshold in 95% of the permutations. That is, a reasonable
upper bound on number of false positive voxels at that t threshold. We
refer to this extension of the standard permutation-based FWER as
continuous permutation-based FWER because it uses the same permu-
tation-based FWER strategy but allows values of >v 1.

Since interpretation of VLSM results typically relies on a large set of
voxels, that interpretation is unlikely to be affected by a small (but >1)
number of false positive voxels. This is not to say that, for example,

=v 10 should be adopted instead of =v 1; rather, this generalization of
FWER allows investigators to assess the strength of their evidence in a
flexible way and to report that assessment in a way that allows readers
(and reviewers) to evaluate the claims.

Continuous permutation-based FWER is somewhat similar to the
false discovery rate (FDR) approach in that both allow multiple false
positive voxels and quantify that rate of false positives. However, the
two methods differ in two important ways. First, FDR is designed to
control the proportion of supra-threshold voxels that are expected to be
false positives (this proportion is usually reported as the q-value),
whereas the FWER approach quantifies the number of possible false
positive voxels, which may be a high or low proportion of supra-
threshold voxels. Second, continuous FWER is permutation-based,
which means that (unlike FDR) it makes no assumptions about dis-
tributions of data or test statistics. The latter property is important
because lesion data may violate the assumptions of FDR severely en-
ough to make FDR unreliable for VLSM. Here we report results from
application of this continuous permutation-based FWER approach in
several contexts. In addition, we used the permutation data to evaluate
whether the nominal FDR q-value correctly quantifies the proportion of
supra-threshold voxels that are expected to be false positives.

3.1. Analysis strategy

We conducted analogous analyses on three sets of data. The first was
the same full dataset used in the cluster size threshold analyses above:
124 left hemisphere stroke cases with two simulated behavioral scores,

percent damage in BA 45 and BA 39. This provides a relatively large
data set with a known correct outcome. The second was randomly
sampled sub-sets of these data to examine how continuous FWER and
FDR perform for smaller data sets. We used 50 random half-samples (N
= 62) and 50 random quarter-samples (N = 31). The third data set was
speech recognition deficit data from 99 left hemisphere stroke cases
reported in a recent article (Mirman et al., 2015a). This data set pro-
vided an opportunity to test continuous FWER and FDR in the context
of real behavioral data where the outcome was relatively un-
controversial: deficits in speech perception and spoken word recogni-
tion should be associated with lesions in left superior temporal lobe
regions. Although not quite as certain as using simulated behavioral
scores, this outcome is very strongly expected and using real behavioral
data allowed us to test these statistical methods in the context real-
world variability.

For each analysis, we conducted standard VLSM analysis and com-
puted continuous permutation-based FWER 95th percentile thresholds
at =v 1, 10, 100, 1000 based on 1000 permutations. That is, t-value
thresholds where 95% of the permutations had fewer 1, 10, 100, or
1000 supra-threshold voxels. We then computed the number of voxels
in the original VLSM that had t values greater than the t threshold at
each v threshold, which is the number of FWER-corrected ( <p 0.05)
voxels at each v threshold. The v threshold and the number of supra-
threshold voxels were then used to compute an effective q value: the
proportion of supra-threshold voxels that can be expected to be false
positives based on the v value. For example, if 500 voxels survived the
correction at =v 10, that would correspond to = =q 10/500 0.02. To
evaluate the standard FDR method, we computed a FDR-corrected t-
threshold using the effective q value from the continuous FWER ana-
lysis. If FDR correctly estimates the nominal proportion of false posi-
tives (q), then the t threshold produced by FDR should (approximately)
match the permutation-based t-threshold with the corresponding ef-
fective q value. That is, the effective q from FWER was aligned with the
q for FDR, so the t-threshold computed by FDR should match the t-
threshold computed by FWER. Any consistent discrepancies in critical t
values will provide insight into whether FDR is anti-conservative or
overly conservative. These analyses were carried out in R version 3.2.4
(R Core Team, 2016) using the ANTsR package version 0.3.3 (Avants
et al., 2016) and the FDR implementation in the AnalyzeFMRI package
version 1.1–16 (Bordier et al., 2011). A basic implementation of the
continuous permutation-based FWER correction method is available at
https://gist.github.com/dmirman/

Fig. 4. Example of continuous FWER threshold calculation. Left panel shows the top sorted t-values from the first 10 permutations. The red box highlights the standard =v 1 permutation
t-values, which produce the red distribution in the right panel and the 95% threshold indicated by the red dashed line. The green box highlights the =v 10 permutation t-values, which
produce the green distribution in the right panel and the 95% threshold indicated by the green dashed line. Analogous t-values, distributions, and 95% thresholds are also shown for

=v 100 (blue) and =v 1000 (purple) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

D. Mirman et al. Neuropsychologia 115 (2018) 112–123

116

https://gist.github.com/dmirman/05a92e0e9e0027f6fe6e528c648143d7


05a92e0e9e0027f6fe6e528c648143d7 and is included in the lesymap
package (https://dorianps.github.io/LESYMAP/), which provides ac-
cess to a wider variety of lesion-symptom mapping methods.

3.2. Results

3.2.1. Simulated scores, full sample
Fig. 5 shows the VLSM results corrected at <p 0.05 using con-

tinuous permutation-based FWER with =v 1, 10, 100, 1000 voxels. The
first column in Fig. 5 corresponds to the standard FWER correction,
which is also shown in the right column of Fig. 3. The other columns
show that (unsurprisingly) the supra-threshold region increases as the
number of allowed false positive voxels increases.

The left panel of Fig. 6 shows the relationship between the voxel
number threshold (v) in the continuous FWER correction and the re-
sulting effective q value. The points in the bottom left corner corre-
spond to the standard, =v 1, FWER correction. As v was increased,
there was a corresponding increase in effective q, the proportion of
supra-threshold voxels that can be expected to be false positives. This
relationship between v and effective q was essentially linear (on log-log
scale) and virtually identical for the BA45 and BA39 test cases. Note
that even at the most lenient threshold, =v 1000, the effective q value
was still quite low (0.011 for BA45; 0.016 for BA39), presumably

because of the very strong relationship between percent damage in a BA
(the simulated deficit score) and lesion in that region.

The right panel of Fig. 6 shows the relationship between the critical
t-value (i.e., the corrected t-threshold) as computed by continuous
FWER and by FDR. The FDR-corrected t-value was computed using the
effective q from the left panel of Fig. 6. Since effective q is a non-
parametric estimate of the true rate of false positive voxels at the cor-
responding t-threshold, if FDR works as intended, then it should pro-
duce t-thresholds that are very similar to those computed by the non-
parametric continuous FWER method. This is the pattern shown in the
right panel of Fig. 6: virtually identical critical t-thresholds computed
by FDR correction and by continuous FWER correction, for both BA45
and BA39 scores. That is, the permutations confirm that, at =q 0.01,
FDR correction accurately produced a critical t-value such that up to 1%
of supra-threshold voxels could be expected to be false positives.

This is an encouraging result for application of FDR to VLSM data
because it shows the q-value correctly quantifies the proportion of false
positive voxels. However, this is an ideal scenario in at least two ways:
(1) a very strong relationship between simulated score (percent damage
in BA 45 or BA 39) and lesion location, and (2) a relatively large sample
size (N = 124). To evaluate the contribution of this second factor we
conducted further analyses of these same data but using smaller sub-
samples of the data.

Fig. 5. Results of VLSM analysis of percent damage to BA 45 (top row, at =x 45) and BA 39 (bottom row, at =x 50). Thresholded using permutation-based continuous FWER at <p 0.05.

Fig. 6. Left: Relationship between voxel
number threshold (v) and the proportion of
supra-threshold voxels that can be expected
to be false positives (effective q). Right:
Relationship between critical t-values (t-
thresholds) determined by continuous
FWER correction and FDR correction.
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3.2.2. Simulated scores, sub-samples
The initial analysis of 124 participants constitutes a fairly large

sample size by VLSM standards. More modest sample sizes (e.g., 40–60)
are far more common and many studies report even smaller samples
(e.g., 20–40). Smaller sample sizes are more likely to (more severely)
violate assumptions of FDR, so, although FDR worked as intended for
the full N = 124 sample, it may not be robust at smaller sample sizes. In
particular, the spatial coherence of lesions means that the voxel-wise

tests violate the test independence assumption and symptom scores are
often non-normal – both of these problems will tend to be more severe
for smaller sample sizes. However, FDR is robust to some degree of
assumption violation (Groppe et al., 2011a, 2011b), so it may produce
approximately correct results even under these conditions. To evaluate
this, we repeated the comparison of continuous FWER and FDR using
50 half (N = 62) and 50 quarter (N = 31) random sub-samples of the
full data set. Fig. 7 shows scatterplots of the critical t-values based on

Fig. 7. Relationship between critical t-values (t-thresholds) determined by continuous FWER correction and FDR correction for 50 randomly selected half-samples (left panel) and 50
quarter-samples (right panel). Deficit scores are percent damage in BA39 (triangles) or BA45 (circles). Each point represents one of the random sub-samples.

Fig. 8. Critical t-values (t-thresholds) determined by continuous FWER correction and FDR correction as a function of sample size. Deficit scores are percent damage in BA39 (circles) or
BA45 (triangles). Error bars represent 95% confidence intervals.
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continuous FWER (at each of the four v thresholds) and the corre-
sponding FDR critical t-value computed using the effective q value. The
dashed line represents exact equivalence between continuous FWER
and FDR, which was approximately true for the full sample. For these
smaller samples, the FDR method tends to produce a substantially less
conservative critical t-value threshold for each effective q value. There
was substantial variability in how far the FDR threshold deviated from
the continuous FWER threshold, with some sub-samples showing fairly
close correspondence (as was observed for the full sample), but most
falling short of that. Comparing the half-sample and quarter-sample
data (left vs. right panels in Fig. 7) shows that both the departure of
FDR from continuous FWER and the variability of their relation became
more extreme for smaller samples.

The interpretation of continuous FWER is transparent, so this dis-
crepancy between the methods represents a problem for FDR. For ex-
ample, for the first quarter-sample in the BA 45 analysis, the (tradi-
tional) =v 1 FWER threshold produced a critical t-value of 6.0 and
5904 voxels had t-values above that threshold. That is, permutation
analysis indicates that only 1 out of those 5904 can be expected to be a
false positive, which is an effective = =q 1/5904 0.00017. Applying FDR
to these data with =q 0.00017 produced a critical t-value of 4.9 and
11,429 voxels passed that t-threshold. According to FDR, only 0.017%
of those 11,429 voxels are expected to be false positives, which is ap-
proximately 2 voxels. However, the permutation data reveal that, if
there were no relationship (i.e., if the null hypothesis were true), then
approximately 100 voxels could be expected to exceed a critical t-value
of 4.9; about 50 times more than the nominal rate implied by the q-
value.

Sample size appears to have different effects on FWER correction
and FDR correction (see Fig. 8). FDR-corrected thresholds are relatively
constant across sample sizes, but FWER-corrected thresholds increase as
sample size becomes smaller. This pattern may arise because violations
of assumptions have a bigger effect in smaller samples. In particular,
because stroke lesions are spatially contiguous, in smaller samples,
many neighboring voxels become indistinguishable – their spatial cor-
relation is 1.0. For example, voxels were nearly unique in the full (N =
124) sample – the average size of patches of equivalent voxels was only
1.7 voxels. In the half-samples (N = 62), it was 4.5–5 voxels, and in the
quarter-samples (N = 31) it was approximately 25 voxels (for a more
thorough evaluation using largely the same dataset see Pustina et al.
2017). The FDR correction is influenced by the degree of skew toward
small p-values (or large test statistics) in the observed voxel-level test
results. In the presence of a true signal (as in the simulations here),
large patches of equivalent voxels may enhance this skew, thus over-
estimating the signal strength and producing a somewhat anti-con-
servative FDR-corrected threshold.

The continuous FWER approach offers a permutation-based alter-
native that incorprates the greater statistical power of FDR (i.e.,
quantifying the expected upper bound of false positives) while using the
distributional properties of both the behavioral data and the lesion data
to naturally account for the spatial correlation and other distributional

properties of the data. This combination of increased power to detect
true effects while accurately quantifying false positives is particularly
important for the many VLSM studies that have sample sizes in the
30–60 range: FDR may produce anti-conservative results for these
smaller sample sizes, but the conservative standard ( =v 1) FWER cor-
rection may relegate these studies to the file drawer. We return to this
issue further after examining a real deficit example.

3.2.3. Speech recognition scores
All of the preceding analyses used simulated deficit scores that had

rather strong lesion-symptom relations. A strong signal is easy to detect
and may obscure weaknesses of a statistical method, so it is important
to test statistical methods with more realistic data. Adding noise to si-
mulated lesion-symptom relations would effectively weaken them, but
real lesion-symptom relations are not simply randomly noisy, so there is
no guarantee that adding random noise would capture the ways that
real lesion-symptom relations differ from simulated ones. However,
using real deficit data is somewhat risky because the true lesion-
symptom relation is not known. To mitigate this concern, we chose a
relatively uncontroversial case: composite speech recognition deficit
scores determined by a factor analysis of data from 99 individuals with
left hemisphere stroke (Mirman et al., 2015a). These scores primarily
reflect phoneme discrimination and auditory lexical decision perfor-
mance (for details see Mirman et al. (2015a, 2015b)) and it is quite
well-established that these tasks primarily engage left superior tem-
poral lobe structures (e.g., Hickok and Poeppel, 2015; DeWitt and
Rauschecker, 2012). As a result, this dataset allows us to investigate
how continuous FWER and FDR would work in a real VLSM context
while being fairly confident about what the correct result should be.

Fig. 9 shows the VLSM results after continuous FWER correction at
=v 1, 10, 100, 1000. As expected, the identified region is in the superior

temporal lobe and, as in the simulated scores analyses, a more relaxed v
threshold produces a larger supra-threshold region. At the standard,

=v 1, threshold, the FWER corrected critical t-value was 5.45 and 57
voxels passed this threshold. On one hand, this is a positive result: it is
unlikely ( <p 0.05) that even one of those 57 voxels is a false positive,
so we should feel confident about interpreting those 57 voxels as being
critically important for speech recognition. On the other hand, those 57
voxels are virtually invisible in the figure (left-most panel in Fig. 9; even
the 261 voxels that passed the =v 10 threshold of =t 5.04 are hard to
see) and it seems unlikely that editors, reviewers, and readers would be
convinced by a 57-voxel result (or even a 261-voxel result). Such a
small cluster might even be within the margin of error of the lesion
segmentation algorithms and the warping algorithm used to align in-
dividual lesion maps to a common template for analysis. Relaxing the v
threshold reveals an easier to interpret result. For example, at =v 100,
the critical t-value was 4.42 and 1527 voxels passed this threshold. Up
to 100 of those 1527 voxels (6.5%) can be reasonably expected to be
false positives, but that probably would not affect how one would in-
terpret the result in the =v 100 panel of Fig. 9.

This is not to say that the threshold should be moved from =v 1 to

Fig. 9. Results of VLSM analysis of Speech Recognition scores. Thresholded using permutation-based continuous FWER at <p 0.05, panels show results at different v thresholds:
=v 1, 10, 100, 1000. Note: at =v 1, the small set of supra-threshold voxels was located more medially than the main group of voxels in the other panels, so the left panel shows the results

at =x 53 while the other panels are at =x 40.
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=v 100 – there may be circumstances where 100 voxels (or 6.5% of the
supra-threshold voxels) would affect the interpretation of VLSM results.
A flexible v threshold gives the continuous FWER approach two im-
portant advantages. First, researchers can select the v threshold that is
most appropriate for testing their hypothesis and can report their re-
sults at multiple v thresholds. If the evidence is strong, they can draw
strong conclusions; if the evidence is not so strong, they can draw
tentative conclusions. For example, the small anterior-most cluster of
voxels that passed the =v 100 threshold may be smaller than 100
voxels and disappears at the =v 10 threshold. This is relatively weak
evidence that anterior superior temporal regions are critical for speech
recognition, especially compared to the much stronger evidence that
posterior superior temporal regions are critical for speech recognition.
This is importantly different from the standard (and increasingly criti-
cized) dichotomous logic that an effect is either “significant” or non-
existent (see also Amrhein et al., 2017; Chen et al., 2016). Second, the
likely upper limit of false positive voxels is transparently available to
the reviewers and readers, who can then evaluate how the v threshold
influences the conclusions; for example, whether the possibility of 100
false positive voxels undermines the conclusions or not. Transparently
reporting the strength of the evidence allows the science to accumulate
– multiple studies that weakly or tentatively show the same pattern can
be aggregated to strongly support a conclusion, and contradictory re-
sults can be evaluated on the strength of their evidence.

Fig. 10 shows the relationship between t-value thresholds based on
continuous FWER correction and FDR correction for the speech re-
cognition data. As in the sub-sample analyses, continuous FWER is
consistently more conservative than FDR, indicating that FDR produced
incorrect results. For example, at =q 0.018, the FDR-corrected critical t-
value was 4.37 and 1703 voxels passed that threshold. The nominal
expectation is that up to 1.8% of those voxels may be false positives
(about 30 voxels), but the permutation data indicate that more than
100 voxels can be expected to be false positives, or more than 3 times
higher than expected. As in the sub-sample analyses, this result suggests
that researchers should be wary of using FDR correction with VLSM
data.

3.3. Discussion

Permutation-based FWER correction uses permutations of the ob-
served data to build a null distribution of voxel-wise test statistics, then
uses this null distribution to set thresholds for evaluating the test sta-
tistics in the original (true) analysis. The standard version of this

approach uses only the most extreme voxel-wise test statistic from each
permutation and the resulting threshold makes it unlikely that even a
single false positive voxel will be observed. We examined a general-
ization of this approach in which the threshold is not based on only the
most extreme ( =v 1) test statistic. Using the v-th most extreme test
statistic (where >v 1) provides a way to quantify the possible rate of
false positive voxels: up to v voxels can be reasonably expected to be
false positives. We refer to this approach as continuous permutation-based
FWER correction. Since single voxels rarely (if ever) affect interpretation
of VLSM results, this extension aligns the correction method with how
VLSM results are interpreted, and allows for transparently reporting the
strength of the evidence. Analyses of speech recognition deficit scores
provided a particularly clear demonstration of the value of quantifying
rates of false positive voxels within a flexible framework. At the stan-
dard =v 1 threshold, only 57 voxels survived the correction – a sta-
tistically “significant” result that is hard to interpret. Examining the
data at =v 10, 100, and 1000 revealed a clear (and unsurprising) re-
lationship between posterior superior temporal lobe damage and
speech recognition deficits. Researchers can calibrate the v threshold to
their hypotheses or regions of interest. For example, a hypothesis about
a very specific region (e.g., role of area Spt in speech processing,
Rogalsky et al., 2015) might require a small v threshold, whereas a
hypothesis about a broader region (e.g., role of the inferior frontal gyrus
in lexical selection, Harvey and Schnur, 2015; Mirman and Graziano,
2013) might allow a larger v threshold. In addition to providing re-
searchers with more flexibility in evaluation of their data, this approach
provides a simple and transparent way to report the expected upper
limit of false positive voxels, which allows readers to evaluate the
conclusions as well.

As can be seen in the left panel of Fig. 4, there are likely to be some
ties among the sorted voxel-wise test statistics, especially in smaller
samples, where patches of equivalent voxels will necessarily have the
same test results. As discussed above, this may contribute to making
FDR correction anti-conservative for smaller samples and it is important
to consider how it affects calculation and interpretation of the con-
tinuous FWER threshold. As an example, consider a threshold calcu-
lated for =v 100. When there are ties, the 100th voxel is equivalent to
some <v 100 voxel as well as some >v 100 voxel, so the threshold
calculated at =v 100 corresponds to a range from more strict to less
strict than the nominal =v 100 level. If that threshold is applied as an
open interval (i.e., only voxels that exceed the threshold), then the
functional threshold is somewhat more conservative (i.e., corre-
sponding to the <v 100 end of the patch) and the v value correctly
specifies the upper limit of the number of false positives that can be
expected. However, if the threshold were applied as a closed interval
(i.e., voxels that are equal to or exceed the threshold), then the func-
tional threshold is somewhat less conservative (i.e., corresponding to
the >v 100 end of the patch). Therefore, it is important that the
threshold be applied as an open interval.

One might consider calculating and applying correction thresholds
using unique patches rather than voxels, but this strategy is problematic
because patches are not geometrically or spatially equivalent. We tested
patch-based corrections and noticed that the error correction became
impossible to interpret because the number and configuration of voxels
under each patch varies (e.g., areas in the periphery of MCA have larger
patches) and depends on the sample size (smaller groups produce larger
patches). Because voxels are geometrically equivalent, it is fairly
straight-forward to interpret a voxel-based threshold that allows, for
example, up to 10 false positive voxels (continuous FWER) or 1% false
positive voxels (FDR) out of some reasonably large number of supra-
threshold voxels. In contrast, up to 10 false positive patches or 1% false
positive patches could cover any part of the results if those 10 or 1%
happened to be large patches. As a result, even a small number or
proportion of patches could undermine any inferences about lesion-
symptom relationships. Therefore, both continuous FWER and FDR
corrections need to be calculated at the voxel level rather than the

Fig. 10. Critical t-values (t-thresholds) determined by continuous FWER correction (at
=v 1, 10, 100, 1000) and FDR correction for analysis of speech recognition scores. Points

indicate the critical t-values, numbers next to the points indicate corresponding q-values.
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patch level.
The v threshold can be regarded as a minimum number of voxels

that must exceed the threshold, which makes the continuous FWER
approach somewhat similar to cluster-based correction methods. The
two methods are also similar in that their thresholds are derived
through permutation. However, there are two important differences.
First, under cluster-based correction, the cluster size threshold is a true
“critical” threshold: if the computed cluster size threshold is 100 voxels,
then a cluster of 101 voxels is “significant” whereas a cluster of 99
voxels is not. In contrast, under continuous FWER, the v threshold is an
estimate of the upper bound of the number of false positive voxels that
can be expected: if =v 100, observing 101 supra-threshold voxels
provides very weak evidence and observing 99 supra-threshold voxels
provides only slightly weaker evidence. This is useful because it pro-
vides a graded way to quantify the strength (or weakness) of the evi-
dence in a way that is straightforward to report and interpret. Second,
the cluster size threshold (by definition) requires the supra-threshold
voxels to be contiguous and (as discussed above) appears to be parti-
cularly vulnerable to spill-over effects arising from the inherent spatial
autocorrelation in stroke lesion data. In contrast, continuous FWER
defines the minimum test statistic that must be exceeded by any voxel,
regardless of its location. This makes it less vulnerable to such spill-over
effects, though it is impossible to be completely immune to them.

Importantly, continuous permutation-based FWER maintains the
advantages of the standard non-parameteric permutation-based FWER
correction strategy. These advantages became apparent in the com-
parison between continuous FWER correction and FDR correction. Like
continuous FWER, FDR (nominally) quantifies the expected rate of false
positive voxels. For a relatively large sample (N = 124) with a very
strong simulated lesion-symptom relation, FDR quite accurately quan-
tified the rate of false positive voxels. However, at smaller sample sizes
(N = 62, N = 31) and with real deficit data (presumably a less strong
lesion-symptom relation), FDR consistently under-estimated the rate of
false positives. To our knowledge, this is the first concrete evidence that
FDR correction may not be appropriate for VLSM analysis.

4. General discussion and conclusions

Permutation-based FWER correction is the current “gold standard”
correction for multiple comparisons in VLSM. The standard permuta-
tion-based FWER strategy is to build a null distribution using only most
extreme voxel-wise test statistic from each permutation. The main
weakness of this approach is that it aims to control the occurrence of
even a single false positive voxel, which is not the scale at which VLSM
results are interpreted. We described an extension - continuous per-
mutation-based FWER - which better aligns with VLSM interpretation
and allows researchers a more flexible balance between false positives
and false negatives. Continuous FWER uses the v-th most extreme voxel-
wise test statistic, so the standard approach is the special case where

=v 1, but other values >v 1 may be used as appropriate for a particular
data set and hypothesis. This provides a principled way for researchers
to flexibility set the upper limit of how many false positive voxels are
allowed and to transparently report this limit along with their results,
so readers can also evaluate the evidence. Since single voxels rarely (if
ever) affect the interpretation of VLSM results, this flexibility lets re-
searchers align their statistical method with their interpretations of the
results.

In addition to continuous FWER, we examined two other methods of
correction, but those results were not encouraging. Using permutations
to set a minimum cluster size tended to produce clusters that extended
well beyond the correct region. This was partly due to a true correlation
between damage in adjacent regions and damage in the correct region
(i.e., spatial coherence); however, since the other correction methods
seemed less susceptible to this spill-over problem, spatial auto-corre-
lation does not appear to be the full explanation. Instead, we suspect
this spill-over occurred because weak or noisy effects in adjacent voxels

were incorporated into true clusters, with the unfortunate consequence
of blurring the boundary of the true symptom-related region. Cluster-
based correction appeared to be effective at controlling the occurrence
of false positive clusters, but the spill-over effect poses a problem for
identifying brain-behavior relationships. The spill-over effect may have
been further exacerbated by the strong relationship between our si-
mulated deficit scores (percent damage) and their corresponding brain
regions. The false discovery rate (FDR) approach is inferentially similar
to continuous FWER: it aims to quantify the rate of false positive voxels.
FDR performed quite well for larger samples with strong lesion-
symptom relations, but consistently underestimated the rate of false
positive voxels when the sample sizes were smaller and in a real data
case (where the lesion-symptom relation is likely to be weaker). This
suggests that researchers should be wary of using FDR in conventional
VLSM analyses.

There is an inherent trade-off between false positives and false ne-
gatives: striving to eliminate false positives will necessarily result in
missing many true effects, but generalizing from every observation will
necessarily produce some incorrect inferences. Setting arbitrary
thresholds of statistical significance makes evidence appear more di-
chotomous than it really is; statistical thresholds encourage binary
thinking in which an effect is either significant or non-existent. This
dichotomy is further exacerbated by publication bias because weaker,
not statistically significant results are simply not published. This reifies
the sense that effects that do not pass the significance threshold are
non-existent, leading to a biased scientific literature and undermining
evidence accumulation. Balancing false positives and false negatives is
particularly challenging in VLSM, where participant recruitment and
testing is difficult and relatively expensive, and samples are generally
large relative to other research in neuropsychology and cognitive
neuroscience. A typical VLSM research project might require a long
period of expensive data collection to reach a reasonable sample size of,
say, N= 50. If analysis of that data set produced results just short of the
standard FWER =v 1 statistical threshold, the researchers would be left
with an unpublishable result. Substantially increasing the sample size is
likely to be impractical (and perhaps impossible) as it would require
another long, labor-intensive, and expensive data collection effort.
Addressing this challenge requires a statistical correction method that
allows researchers to flexibly balance false positives and false negatives
and to report how they struck that balance in a transparent fashion so
that readers can interpret the evidence. The v threshold plays this role
in the continuous permutation-based FWER correction method: v is the
expected upper limit of false positive voxels, which can be adjusted to
suit the researchers’ hypotheses and reported for readers to use in their
evaluation. Making the full statistical maps easily available to other
researchers through a repository would further support evidence ac-
cumulation through re-analysis and meta-analysis.

We have deliberately avoided recommending a specific v threshold
to be used in continuous FWER correction, or how many supra-
threshold voxels (effective q) should be considered “significant”. Such
thresholds are fundamentally arbitrary – there is nothing qualitatively
different between =v 10 and =v 11, just as there is nothing qualita-
tively different between =p 0.04 and =p 0.06. Setting significance
thresholds contributes to mis-interpretation of these continuous statis-
tics and results that do not pass the threshold tend not to be published,
which creates an incentive for researchers to use (undisclosed) varia-
tions in data pre-processing and analysis methods to achieve a ”sig-
nificant” result (for more discussion see Amrhein et al. 2017). Thus, in
lieu of recommending specific choices of hard thresholds, we offer
guidelines for effective use of continuous FWER. First, the v threshold
should match the neural specificity of the hypothesis under investiga-
tion. Neurally precise hypotheses (e.g., anterior vs. posterior portion of
the inferior frontal gyrus) may require a small v threshold; in contrast, a
high v threshold may be sufficient for evaluating a neuroanatomically
broader hypothesis (e.g., role of anterior temporal lobe vs. the temporo-
parietal cortex). It may also be useful to consider the overall number of
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voxels that are entered into the analysis, especially for VLSM analyses
that are constrained to specific regions of interest. Second, the number
of supra-threshold voxels should be substantially larger than v (the ef-
fective q, which should be fairly small, may serve as a useful summary
statistic). For example, observing 101 supra-threshold voxels at =v 100
would not license strong conclusions because almost that many could
be false positives. That is, the conclusions drawn by investigators
should reflect both the number of supra-threshold voxels relative to the
v threshold (effective q) and the neural precision of their hypothesis.
These general guidelines may not be sufficient for selection of a single
appropriate v threshold, so it may be useful to test and report results at
multiple v thresholds as a way to assess the robustness of the effects.
Continuous FWER is an extension of standard permutation-based FWER
that enables the researcher to explore and report the strength of the
effects by testing different v thresholds. Further investigation by in-
dependent groups will help to refine and set community standards for
how v thresholds should be set and explored. We have made available a
basic implementation4 of continuous FWER and one that is integrated
into a user-friendly lesion-symptom mapping package,5 both of which
make it easy to test multiple different v thresholds in order to provide a
more complete understanding of the strength of the evidence.

It may be possible to further improve the correction methods de-
scribed here by considering unique patches (where lesion status is
perfectly correlated across participants) rather than individual voxels
(Kimberg et al., 2007). Our (unsystematic) comparisons suggest that, in
a typical data set, the number of unique patches may be an order of
magnitude smaller than the number of voxels. Such a vast reduction in
the number of (redundant) tests would have substantial consequences
for these methods, as well as for the processing time required to com-
pute them. More generally, including voxel neighborhood information
as part of voxel-level corrections may lead to even more effective al-
gorithms. In addition, it may be possible to develop algorithms to au-
tomatically establish an optimal v-threshold by using spatial correla-
tions in the data (e.g., number of patches, neighborhood correlations)
as an indication of the amount of continuous FWER correction required
for the specific dataset under investigation. Finally, recent development
of multivariate lesion-symptom mapping methods (Zhang et al., 2014;
Pustina et al., 2017), which evaluate lesion-symptom relationships
across all voxels simultaneously, provide a better method for studying
brain-behavior relationships and mitigate the need for multiple com-
parisons correction. Such methods are not in wide use yet, but they
offer a promising alternative approach.

In addition to optimizing corrections for multiple comparisons,
getting the most out of lesion-symptom studies requires optimizing the
test statistics themselves. Recent analysis show that correcting for
overall lesion volume and only testing voxels with sufficient lesion in-
volvement is important for avoiding mis-localization (Sperber and
Karnath, 2017). For functional neuroimaging data, threshold-free
cluster enhancement (TFCE; Smith and Nichols, 2009) has been shown
to improve voxel-wise signal-to-noise ratio by incorporating local sup-
port information from nearby voxels. This method considers all possible
cluster-forming thresholds, so it can capture support from small strong
clusters as well as weaker diffuse clusters. Once the voxel-wise TFCE
statistic has been calculated, it still requires correction for multiple
comparisons. Because they operate at different steps in the analysis
process, calculating voxel-wise test statistics using TFCE, then cor-
recting those test statistics for multiple comparisons using continuous
FWER correction may jointly enhance power in VLSM analysis.6

VLSM is important for basic and translational human neuroscience.

Analysis of lesion-symptom relations has been at the core of cognitive
neuroscience research since the mid-19th century and remains critical
to the field. Lesions that produce chronic deficits in a particular domain
or task provide the strongest evidence that the damaged neural struc-
tures were critical for that domain or task. This method is an important
complement to functional neuroimaging in neurologically-intact po-
pulations, but the differences in data collection challenges create
somewhat different statistical demands. Cognitive neuroscience has
tremendous potential for stimulating development of new and im-
proved diagnosis, treatment, rehabilitation, and education strategies.
That potential cannot be realized without testing the affected popula-
tions. VLSM offers a unique opportunity for research that answers
fundamental questions about the neural basis of cognition while ad-
dressing the real-world problem of understanding neurogenic cognitive
deficits. Robust, flexible, and transparent statistical methods play an
important role in maximizing the impact of VLSM research.
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