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Abstract

For over a quarter-century, the TRACE model and simple recurrent networks have
dominated computational modeling of spoken word recognition, providing the broadest
and deepest coverage of behavioral phenomena. This chapter will highlight a few of
the more recent and currently-active phenomena. It will then describe challenges to
these models – domains that are important for understanding spoken word recognition
and where a substantial behavioral literature has accrued, but where computational
accounts are still lacking. These zones of proximal development are promising domains
for expansion toward a more complete model of spoken word recognition.

Computational accounts of spoken word recognition have largely relied on the TRACE
model (McClelland & Elman, 1986) and Simple Recurrent Networks (SRNs; Elman, 1990).
It is a testament to their explanatory power that, 25 years later, these models remain the
dominant computational frameworks for spoken word recognition. These models have been
so successful that they have largely defined the agenda for models of spoken word recogni-
tion, but there are now well-documented, important phenomena that are relevant to spoken
word recognition and yet are (largely) not addressed by models of spoken word recognition.
The goal of this chapter is to look forward from these models. Detailed reviews of spoken
word recognition (e.g., Magnuson, Mirman, & Myers, 2013) and comprehensive historical
reviews of models of spoken word recognition (e.g., Magnuson, Mirman, & Harris, 2012;
Weber & Scharenborg, 2012) are available elsewhere; I will provide only a basic introduc-
tion to the computational problem of spoken word recognition and the architectures of the
TRACE model and SRNs, then focus on a few important behavioral phenomena that these
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models have addressed and a few challenges for these models. The challenges take the form
of neighboring domains that are important for understanding spoken word recognition and
where a substantial behavioral literature has accrued, but where computational accounts
are still lacking. Other models offer more focused accounts of phenomena either within
spoken word recognition or in related domains, but none offer a substantive account of
spoken word recognition that also addresses the challenges discussed in this chapter. I
will conclude with some suggestions for expanding the scope of models of spoken word
recognition through integration of computational accounts of spoken word recognition and
other domains.

1 Spoken Word Recognition

The computational problem of spoken word recognition is typically defined as mapping
a string of speech sounds to a lexical representation (e.g., Magnuson et al., 2013). The
speech sounds are often represented abstractly, as distinct phonemes, which may be de-
fined by articulatory features (voicing, place of articulation, etc.) to allow the model to
capture effects of feature similarity between phonemes (e.g., that /b/ is more similar to
/p/ than to /s/). The lexical representation is a critical intermediate step in the arbitrary
mapping from the auditory (phonological) input to word meaning (semantics). That is, the
lexical representations pull apart similar auditory/phonological representations in order to
facilitate their mapping to very different semantic representations (for example, “bat” and
“pat” sound similar but have very different meanings). Whether these non-semantic lexical
representations are a theoretical claim or just a convenient simplification, “lexical access”
is typically taken to mean activation of a representation of a unique word-form without
necessarily activating its semantic, syntactic, or pragmatic relations.

Even within this narrow definition, spoken word recognition is a very challenging computa-
tional problem. The speech signal is transient and its rate is not controlled by the listener
and, unlike printed words and letters, individual speech sounds are blended together due
to coarticulation, lacking invariant cues to boundaries between speech sounds or spoken
words. The word segmentation and recognition problem is further complicated by the
fact that many longer words have shorter words embedded within them (e.g., “window”
includes “win”, “wind”, “in”, and “dough”/”doe”). Many of these issues are discussed in
more detail in other chapters of this volume.

The computational difficulty of this problem is belied by the fact that typical adults seem
to recognize spoken words effortlessly. There is broad agreement about the core aspects of
how spoken word recognition is carried out:

• Incremental activation: activation of lexical candidates begins as soon as the initial
sound is heard.
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• Parallel activation: multiple lexical candidates are activated simultaneously, with
activation strength proportional to their similarity to the input and their prior prob-
ability (frequency and fit with context).

• Competition: lexical candidates compete for recognition.

• Interactivity: activation of lexical candidates feeds back to influence speech percep-
tion and is influenced by top-down signals from semantic, syntactic, and pragmatic
context.

2 The TRACE Model and Simple Recurrent Networks

The TRACE model (McClelland & Elman, 1986) and SRNs (Elman, 1990) have been the
two most influential models of speech perception and spoken word recognition. At the time
of their introduction, these models already captured many of the important behavioral phe-
nomena and they have continued to be remarkably successful at making novel predictions
and explaining new phenomena. Detailed descriptions of these models and their relations
to other models of spoken word recognition are provided in the original articles and other
recent reviews (Magnuson et al., 2012; Weber & Scharenborg, 2012).

The TRACE model (Figure 1, left panel) is an implementation of interactive activation and
competition principles in the domain of speech perception and spoken word recognition. It
consists of a feature layer, a phoneme layer, and a lexical layer; with each layer consisting
of a set of simple processing units. Activation of each unit corresponds to the combined
evidence that the corresponding linguistic unit occurred at a particular time within the
spoken input. When input is presented at the feature layer, it is propagated in a cascad-
ing manner to the phoneme layer, then to the lexical layer through hand-coded excitatory
connections between mutually consistent units. As phoneme and lexical units become ac-
tive, mutually exclusive units within layers compete through inhibitory connections and
send excitation back, so the excitatory process is bi-directional (“interactive”) with both
bottom-up (features to phonemes to words) and top-down (words to phonemes to features)
signals. Processing proceeds incrementally with between-layer excitation and within-layer
competitive inhibition. The units follow the standard interactive activation function: neg-
ative net input drives the unit towards its minimum activation level, positive net input
drives the unit towards its maximum activation level, and activation decays toward a base-
line rest activation level. A fully-documented Java implementation of TRACE is available
at http://maglab.psy.uconn.edu/jtrace/ (Strauss, Harris, & Magnuson, 2007).

Unlike the TRACE model, which is a specific implementation of certain computational
principles, simple recurrent networks constitute a diverse class of models that share certain
implementational and computational features. A standard SRN (Elman, 1990) consists
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Figure 1: Left: Schematic diagram of the TRACE model of speech perception and spoken
word recognition. Arrows represent hand-coded weights (only a subset is shown). Right:
Schematic diagram of simple recurrent network. Solid arrows represent trainable weights,
dashed arrow represents copy weights.

of simple processing units organized into four layers: input, hidden, output and context
(Figure 1, right panel). There are feedforward connections from input to hidden units
and from hidden to output units, as in a standard feedforward network. The context
units contain an exact copy of the hidden units at the previous time step and are fully
connected to the hidden units. These recurrent connections provide the network with the
potential for graded memory of previous time steps. Except for the fixed “copy” hidden-to-
context connections, all connections in the network are trained through backpropagation of
error (Rumelhart, Hinton, & Williams, 1986), which is a generalization of the “delta rule”
gradient-descent learning algorithm in which the observed network output is compared to
a target pattern and connection weights are adjusted to reduce this error.

A typical approach to modeling spoken word recognition with SRNs is to present a sequence
of input vectors corresponding to segments of auditory/phonological input (e.g., features,
phonemes, or syllables) and set the desired output to be the next input segment or the
current word. This is an important innovation over other supervised learning algorithms
because it does not require an external teaching signal – the input signal itself provides
the target activation information. The model is trained to predict the input, which forces
it to learn the structure of the input (for a more detailed discussion of the importance of
prediction in the related domain of sentence processing see Altmann & Mirković, 2009).
Depending on the nature of the training corpus and the size of the network, SRNs can
develop sensitivity to fairly long stretches of context. For the purposes of modeling spoken
word recognition, an effective strategy (e.g., Magnuson, Tanenhaus, Aslin, & Dahan, 2003)
is to use a feature-based representation of phonemes as input and localist lexical repre-
sentations as output (like the TRACE model); however, one can use distributed output
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representations (e.g., Gaskell & Marslen-Wilson, 1997), or have multiple output layers for
simulating simultaneous performance in different tasks (e.g., Gaskell & Marslen-Wilson,
1997; Mirman, Graf Estes, & Magnuson, 2010).

3 Model Successes

The TRACE model and SRNs can account for dozens of behavioral phenomena in speech
perception and spoken word recognition; this section highlights several sets of behavioral
phenomena selected because (1) they critically involve lexical representations, (2) they
continue to be the subject of active behavioral research in spoken word recognition, and
(3) they were demonstrated (largely) after the introduction of these models so the models
were not designed to account for these phenomena. This last point is important because
one of the primary strengths of computational models – that they make concrete testable
predictions – typically leads them to be revised or even completely rejected. The fact that
the TRACE model and SRNs have accounted for so many new phenomena represents their
most impressive successes and is largely responsible for their continued relevance in current
research on spoken word recognition.

3.1 Time Course of Activation and Competition

Allopenna, Magnuson, and Tanenhaus (1998) tracked participants’ eye movements while
they performed a spoken word-to-picture matching task and found that, as the input signal
unfolds, fixation probabilities rise equivalently for words matching the input (“cohorts”,
such as “penny” and “pencil”) until disambiguating information becomes available. Later
in the time course, words that rhyme with the target (e.g., “carrot” and “parrot”) are
also fixated more than baseline unrelated words, though this effect is smaller than the
cohort effect. Figure 2 (left panel) shows an example of data from such an experiment.
Simulations of the TRACE model (Figure 2, middle panel) reveal the same pattern: strong
initial activation of cohort competitors followed by later and (much) weaker activation of
rhyme competitors. The rhyme activation is lower than cohort activation because it is
being suppressed by the already-active target and cohorts. Together, these behavioral
and simulation results demonstrate that the incremental and parallel activation principles
must operate as a “continuous mapping” process with incoming input providing bottom-up
support for all lexical representations that are consistent with it (for more discussion of
different types of incrementality and continuous mapping see Allopenna et al., 1998).

In a subsequent study, Magnuson et al. (2003) demonstrated that the same effect is pro-
duced by a SRN (Figure 2, right panel). Their SRN was trained to predict the current
word based on sequential input of articulatory/auditory features. The cohort competition
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Figure 2: Cohort and rhyme competition effects. Left: example of behavioral (eye-tracking)
data based on a pilot experiment conducted in the author’s laboratory (gray ribbon in-
dicates SE). Middle: TRACE model predicted fixation probabilities based on simulations
reported by Mirman et al. (2011). Right: SRN predicted fixation probabilities, replotted
with permission from Magnuson et al. (2003).

effect is straightforward: the model was trying to guess the incoming word, so given /bi/
it would partially active all words in its lexicon that started with /bi/ – beaker, beetle,
etc. Similarly, later information (e.g., /-ikˆr/) would provide partial bottom-up support
for words sharing that offset (e.g., beaker, speaker, etc.). The SRN did not have inhibitory
weights between lexical units, so the magnitude of the rhyme effect was based entirely on
the bottom-up weights from the hidden layer and, indeed, the rhyme effect evolved over the
course of learning. Initially, the rhyme effect was as large as the cohort effect, indicating
that the model had not yet learned its lexicon well enough to take complete advantage of
the early input. As learning continued, the rhyme effect was gradually reduced, which is an
important developmental progression (a point that is revisited below). Additional training
led to the complete elimination of the rhyme effect as the model learned to take advantage
of its simplified lexicon and perfectly clear input in order to rule out words that did not
match at onset.

3.2 Statistical Learning

As mentioned above, the speech signal does not contain invariant cues to word boundaries,
so word segmentation requires combining multiple imperfect cues (e.g., Christiansen, Allen,
& Seidenberg, 1998). One of those cues is lexical information: even without marked word
boundaries, it is sometimes possible to infer boundary locations based on the constraint that
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the resulting segments have to be real words. For example, there is only one way to segment
the printed sequence “silencesbetweenwords” to produce a sensible sequence of words. The
lexical competition dynamics of the TRACE model produce this sort of lexically-based word
segmentation (a clear and detailed discussion with simulations is provided by McClelland
& Elman, 1986, p. 61-69).

Another cue is the transitional probability between speech segments: the likelihood of a
particular segment (e.g., syllable) given the preceding segment (syllable). Within-word
transitional probabilities tend to be high and between-word transitional probabilities tend
to be low. In a landmark study, Saffran and colleagues found that infants and adults are
sensitive to such transitional probabilities and can use them to segment a speech stream
that has no other cues to word boundaries (for a simple review see Saffran, 2003). Subse-
quent studies have shown that this kind of statistical learning facilitates learning of word
meanings in infants (Graf Estes, Evans, Alibali, & Saffran, 2007) and adults (Mirman,
Magnuson, Graf Estes, & Dixon, 2008). Although these behavioral observations had not
yet been made, Elman’s (1990) original description of SRNs demonstrated that SRNs are
sensitive to transitional probabilities and that this information could be used to segment
words. Later simulations specifically showed that SRNs also exhibit the facilitative effect
of transitional probability on word learning and that this effect arises because syllables
with higher transitional probabilities develop hidden-layer representations that are more
distinctive and therefore easier to map to lexical-semantic representations (Mirman et al.,
2010).

3.3 Lexically-Guided Tuning

One consequence of interactive processing in spoken word recognition is that lexical acti-
vation feeds back affect speech perception (for reviews see McClelland, Mirman, Bolger,
& Khaitan, 2014; McClelland, Mirman, & Holt, 2006). A particularly important recent
example is lexically-guided tuning (for a review see Samuel & Kraljic (2009) and for a
broader discussion see Chapter 9 in this volume): if an ambiguous speech sound is con-
sistently presented in disambiguating lexical contexts, it will come to be perceived in the
lexically-consistent way even without the context. For example, an ambiguous sound be-
tween /f/ and /s/ that is presented in words like “sheri ” will come to be identified as /f/
even when presented in isolation (or will be identified as /s/ if it had been presented in
words like “Pari ”).

The addition of a simple Hebbian learning algorithm was sufficient to produce this lexically-
guided tuning effect in the TRACE model (Mirman, McClelland, & Holt, 2006): an am-
biguous input initially activates both possible phoneme units, but lexical feedback provides
direct excitatory input to the lexically-consistent phoneme unit. The Hebbian learning al-
gorithm implemented by Mirman et al. strengthened the connection between concurrently
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active units; since the lexically-consistent phoneme unit was more active (due to lexical
feedback) it developed stronger connections to the input pattern. As a result, after the
exposure/learning period, the previously ambiguous input pattern activated the lexically-
consistent phoneme more strongly even when there was no lexical context.

3.4 Individual Differences

Understanding individual differences in speech perception and spoken word recognition has
important theoretical and practical implications, but these efforts are often marginalized.
On the practical side, understanding individual differences may help to develop more effec-
tive treatment strategies for developmental and acquired language deficits and may help
adults learn a second language. On the theoretical side, individual differences reveal the
structure of the cognitive system under investigation. The individual differences approach
has deep roots, from the work of 19th century neurologists, which formed the founda-
tion of cognitive neuroscience, to research on chess and memory experts at the dawn of
the cognitive revolution, though its appeal may have waned with the advent of functional
neuroimaging and undergraduate participant pools. Nevertheless, the combination of com-
putational modeling and case series studies of individuals with acquired language deficits
(Patterson & Plaut, 2009; Schwartz & Dell, 2010) has had tremendous impact on theories
of semantic memory (e.g., Lambon Ralph, 2014; Rogers et al., 2004) and spoken word
production (Dell, Schwartz, Nozari, Faseyitan, & Coslett, 2013; Schwartz, Dell, Martin,
Gahl, & Sobel, 2006). Note that these computational models are instantiations of general
theories of semantic memory and spoken word production, not theories of deficits per se.
The neuropsychological data provide additional constraints on those theories and a poten-
tial link between cognitive theories and the neural implementation (e.g., Dell et al., 2013;
Lambon Ralph, 2014). There have been far fewer systematic efforts to use computational
models to account for individual differences in spoken word recognition. However, there
have been a few important and promising successes.

Yee (2005) found that individuals with Broca’s aphasia exhibited reduced cohort com-
petition and increased rhyme competition, whereas individuals with Wernicke’s aphasia
exhibited the opposite pattern – increased cohort competition and reduced rhyme com-
petition. Mirman et al. (2011) re-analyzed these data and found that, in addition to
the apparent double dissociation, the participants with aphasia also exhibited a negative
correlation between cohort and rhyme competition effect size. Mirman et al. then manip-
ulated TRACE model parameters to implement six different competing accounts of spoken
word recognition deficits in aphasia. Only one implementation accounted for both the
double dissociation and the negative correlation between cohort and rhyme effect sizes: a
response selectivity parameter that controls how activation of lexical representations drives
responses. Low selectivity meant less sensitivity to activation differences, which predicted
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relatively more selection (fixation) of weak competitors (rhymes) and less selection (fix-
ation) of strong competitors (cohorts), as observed for individuals with Broca’s aphasia.
High selectivity meant increased sensitivity to activation differences, which predicted rela-
tively more selection (fixation) of strong competitors (cohorts) and less selection (fixation)
of weak competitors (rhymes), as observed for individuals with Wernicke’s aphasia. Re-
gardless of whether this specific claim holds as more data are collected, computational
models provide a common ground for testing theories. Creating concrete instantiations of
the competing accounts makes it easier to make predictions from individual theories, to
test theories, and to improve them. Similar approaches have also been applied to individ-
ual differences within the relatively homogenous population of college students (Mirman,
Dixon, & Magnuson, 2008) and in children with specific language impairment (McMurray,
Samelson, Lee, & Tomblin, 2010).

These successes represent just first steps toward computational models of individual dif-
ferences in spoken word recognition. There are far more behavioral data about individual
differences in speech perception and spoken word recognition than have been addressed
computationally, from bilingualism (Chapter 6 of this volume) to atypical development
(specific language impairment, autism spectrum disorders, etc.; Chapter 8 of this volume)
to acquired language disorders. It is not uncommon to attribute such individual differences
to constructs, such as inhibitory control or language experience, that have relatively direct
computational implementations in TRACE and/or SRNs (e.g., lexical inhibition param-
eter, number of training epochs). Therefore, such theoretical claims are readily testable
using these computational models.

3.5 Development

An extremely important and very common source of individual differences in spoken word
recognition is simply development. Mayor and Plunkett (2014) conducted simulations of
the TRACE model using lexicons based on published norms of infant vocabulary develop-
ment and provided new insights into how lexicon size and composition should affect spoken
word recognition during development. Examining the specific case of a proposed shift from
holistic to segmental word representations (Walley, 1993), SRN simulations (Magnuson et
al., 2003) offered a new theoretical perspective: a näıve (untrained) model does not know
whether word onsets or offsets are going to be more informative about the identity of the
word and it takes some time for the model to learn the phonological structure of its lexi-
con. As a result, early in learning, weak representations produce equal sensitivity to onset
(cohort) and offset (rhyme) overlap. As the model’s knowledge of the lexical structure
develops, the model learns to take more and more advantage of the onset information,
leading to larger cohort effects and smaller rhyme effects.

As these studies demonstrate, a biologically plausible model is not strictly necessary for
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computational investigations of spoken language development and individual differences.
By providing direct access to the parameters that govern its processing dynamics, the
TRACE model is a powerful framework for testing and developing computational accounts
of individual differences and development. Developmental and acquired language impair-
ments can be modeled using adjustments of these parameters; typical development can be
modeled as increases in connection strengths and lexicon size. SRNs offer another frame-
work for computational investigation of development (and individual differences), one in
which both development and the parameters that govern processing dynamics are more in-
trinsic to the model and the results are emergent properties. Like the domain of individual
differences, there are far more behavioral data on development of spoken word recognition
than have concrete computational accounts (see, e.g., Chapters 3 and 7 of this volume);
however, the existing successes suggest that TRACE and SRNs are promising frameworks
for future computational efforts.

4 Model Challenges

The previous section highlighted some of the most important successes of the TRACE
model and SRNs for current research in spoken word recognition. However, these successes
are within the specific domain of spoken word recognition; the weaknesses are in addressing
how spoken word recognition interacts with and is influenced by other cognitive domains
such as semantic memory, cognitive control, and learning. Because these issues have been
defined as outside the scope of models of spoken word recognition, the existing models have
fallen farther and farther behind contemporary behavioral and neuroscience research on
spoken word recognition. As the final section will discuss, these domains have their own
computational models, so there is potential for integration, but current models of spoken
word recognition have not done so.

4.1 Semantic, Syntactic, and Pragmatic Constraints

Models of spoken word recognition typically stop at a simple localist lexical representation
that does not capture any semantic information. Semantic information is activated very
quickly from speech input, even before the word is complete (e.g., Gaskell & Marslen-
Wilson, 2002) and top-down semantic influences reach down to affect speech perception
(e.g., Borsky, Tuller, & Shapiro, 1998; Warren & Warren, 1970). That is, cascading and
interactive processing should produce lexical activations that reflect the combination of
top-down influences and bottom-up phonological influences. Indeed, like the cohort and
rhyme competition effects, eye-tracking studies have revealed incidental activation of se-
mantic competitors during spoken word-to-picture matching (e.g., Huettig & Altmann,
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2005; Mirman & Graziano, 2012; Mirman & Magnuson, 2009; Yee & Sedivy, 2006), includ-
ing time course differences between distinct types of semantic features or relations (e.g.,
Kalénine, Mirman, Middleton, & Buxbaum, 2012).

Failing to consider semantic influences when modeling spoken word recognition could lead
to substantial misrepresentation or misunderstanding of the processing dynamics, especially
when the core experimental paradigms often involve semantic processing (e.g., spoken
word-to-picture matching requires accessing the semantic content of the word and the
pictures). For example, although competition between phonological neighbors typically
delays recognition of spoken words from “dense” phonological neighborhoods, Chen and
Mirman (2014) found that semantic input (implemented as picture preview) could reverse
this effect. This surprising facilitative effect was predicted by their model (see also Chen
& Mirman, 2012) in large part because their model was designed to capture the effects of
both phonological and semantic input.

Models of spoken word recognition have also ignored a growing literature showing that
listeners anticipate upcoming words based on preceding semantic context (for a review see
Altmann & Mirković, 2009), which affects both target recognition and degree of competitor
activation (e.g., Altmann & Kamide, 1999; Kalénine et al., 2012; Kukona, Fang, Aicher,
Chen, & Magnuson, 2011). This rapidly growing literature suggests that the effects of
anticipation on lexical competition are not straightforward and there are open questions
that may be fruitfully addressed by computational accounts (see also Chapter 4). For ex-
ample, syntactic and pragmatic expectations about grammatical class (e.g., whether the
speaker’s next word is going to be an adjective or a noun) seem to constrain lexical compe-
tition such that nouns compete with nouns but not with adjectives (Magnuson, Tanenhaus,
& Aslin, 2008). On the other hand, pragmatic “common ground” expectations seem to
produce target anticipation without reducing competition from incompatible competitors,
whereas semantic expectations produce both target anticipation and reduced competition
from incompatible cohorts (Barr, 2008). Without a computational implementation, it is
not clear how common ground constraints could be strong enough to produce robust antic-
ipation effects without at least reducing (if not necessarily eliminating) competition from
incompatible cohorts. There may be not-yet-discovered aspects of spoken word recogni-
tion dynamics that explain this, but investigating them requires a model that implements
semantic, syntactic, and pragmatic constraints.

These phenomena are outside the scope of current models of spoken word recognition,
but they do not necessarily require a radical overhaul of computational frameworks. For
example, SRN models of sentence processing readily produce anticipation/prediction effects
(Altmann & Mirković, 2009) and such effects can be captured using other approaches within
the parallel distributed processing (PDP) framework (e.g., Kukona, Cho, Magnuson, &
Tabor, 2014). The challenge may be integrating SRN models of spoken word recognition
and sentence processing rather than developing a novel computational framework.
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4.2 Auditory and Acoustic Realities

Just as the simplified output representations ignore the influence of higher-level factors,
the simplified input to models of spoken word recognition also underestimates the way the
realities of the speech signal affect spoken word recognition. Much like semantic, syntactic,
and pragmatic context, phonological context also produces anticipation (e.g., DeLong, Ur-
bach, & Kutas, 2005) and may similarly constrain the activation and competition dynamics
(e.g., Tobin, Cho, Jennett, & Magnuson, 2010).

Models of spoken word recognition typically assume clear input and a cognitive-perceptual
system uniquely engaged in spoken word recognition. In stark contrast, natural spoken
word recognition takes place under a variety of “adverse conditions” (for a comprehensive
review see Mattys, Davis, Bradlow, & Scott, 2012): word reductions and deletions (typical
of casual speech, e.g., Dilley & Pitt, 2010), accented speech, disfluencies, energetic mask-
ing (background noise) and filtering (e.g., telephone transmission filters out low and high
frequencies), and listener attention/distraction (cognitive load) or imperfect hearing. Gen-
eralization of the lexically-guided tuning effect described above appears to be influenced by
allophonic similarity (Kraljic & Samuel, 2006; Mitterer, Scharenborg, & McQueen, 2013),
suggesting that speech sound representations preserve aspects of auditory input beyond just
abstract phoneme identity (see also Chapter 1). Sensitivity to systematic sub-phonemic
differences can also simplify the spoken word recognition task – the association between
vowel length and word length can help to distinguish embedded and carrier words such
as “ham” from “hamster” (e.g., Salverda, Dahan, & McQueen, 2003). Addressing these
issues from a computational perspective requires grappling with core theoretical questions
such as: What are the representational units of speech perception? How do abstract and
episodic representations jointly contribute to spoken word recognition? If immediate speech
sound recognition is not possible in adverse conditions, how is the time course of lexical
activation and competition affected?

As with top-down effects of semantic, syntactic, and pragmatic context, the SRN frame-
work is likely to be able to capture at least some of these effects. SRNs would certainly
produce phonological anticipation effects and the SRN model developed by Magnuson et
al. (2003) would likely exhibit sensitivity to vowel length as a signal of word length if its
input representation included this property of natural spoken words. In simulations of the
TRACE model, addition of input noise increases the size of the rhyme competition effect
(Mirman et al., 2011), providing a computational prediction regarding the effects of noise
in the input speech signal or peripheral auditory perceptual impairment.
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4.3 Cognitive Control

In models of spoken word recognition, “inhibition” is usually implemented as a domain-
specific process such as inhibition between lexical representations, either by hand-coded
inhibitory connections or emergent from representational overlap. In cognitive science more
broadly, “inhibition” is typically framed as a higher-level executive or cognitive control
function (“inhibitory control”). Studies that explore inhibitory control have used a mixture
of non-linguistic tasks (e.g., the flanker task) and tasks that have a verbal component (e.g.,
the Stroop task), but have rarely made any meaningful contact with mechanisms of word
processing. Instead, they seem to view inhibitory control as something that takes place
outside the language system and modulates processing within the language system.

One might imagine that this is merely coincidental terminological overlap with no mecha-
nistic implications, were it not for the fact that cognitive control is often invoked to explain
aspects of spoken word processing, particularly individual differences in spoken word recog-
nition. For example, larger inhibitory effects of lexical neighborhood density have been
attributed to decreases in inhibitory control in normal aging (Sommers & Danielson, 1999;
Sommers, 1996; Taler, Aaron, Steinmetz, & Pisoni, 2010), Alzheimer’s type (Sommers,
1998), and aphasia (Botezatu & Mirman, 2014; Mirman & Graziano, 2013).

The role of cognitive control in spoken word recognition is also apparent in aphasic lexical-
semantic “access deficits”, in which word (or concept) knowledge is intact but access of
this knowledge appears to be ineffective, inefficient, and inconsistent (for a detailed review
see Mirman & Britt, 2014). These effects have been demonstrated in spoken word-to-
picture matching and spoken-to-written word matching (and other tasks), but substantial
extensions of existing models of spoken word recognition would be required to account
for all of the relevant phenomena and there is no single account of access deficits to be
integrated with models of spoken word recognition. On one view, access deficits arise from
abnormal activation and deactivation (refractoriness) due to damage to neuromodulatory
systems (Gotts & Plaut, 2002), but this model did not attempt to capture even basic
aspects of spoken word recognition. Combining existing models of spoken word recognition
with the computational model of neuromodulatory damage may provide a way toward a
comprehensive account of access deficits and the role of cognitive control in spoken word
recognition. As a starting point, Mirman et al. (2011) found that modulating the gain of
the TRACE model’s response selection mechanism (the slope of the non-linear relationship
between relative activation and response probability) provided the best account for the
trade-off between rhyme and cohort competition effects in 8 individuals with aphasia,
consistent with the hypothesis that the deficit is related to cognitive control mechanisms
outside the spoken word recognition system.

The contrast between the models of Gotts and Plaut (2002) and Mirman et al. (2011) is
instructive. Gotts and Plaut proposed a sophisticated, biologically-based model of neuro-
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modulatory cognitive control, but a highly simplified model of word recognition. Mirman
et al. used a sophisticated, comprehensive model of spoken word recognition (TRACE),
but a highly simplified model of cognitive control and response selection. Further efforts
to bridge this gap and connect spoken word recognition with cognitive control may lead to
substantial advances in our understanding of how spoken words are recognized.

4.4 Learning & Memory

Although models of spoken word recognition have captured some very important aspects of
the interactions between spoken word recognition and learning and memory, these accounts
focus on individual phenomena and are still a long way from capturing the complexity of
how learning and memory impact spoken word recognition (see Chapter 9, this volume).
One particularly interesting set of phenomena involve the effect of sleep-related memory
consolidation of word learning and lexical structure. The importance of sleep for memory
consolidation has been known for some time (Stickgold, 2013), but recent studies have
demonstrated its particular role in word learning (for a review and theoretical perspec-
tive see Davis & Gaskell, 2009). Specifically, novel words can be learned quite quickly
(e.g., Shtyrov, Nikulin, & Pulvermüller, 2010), but they do not begin to compete with
known words until a period of consolidation has passed, typically overnight (Dumay &
Gaskell, 2007, 2012; Henderson, Weighall, Brown, & Gaskell, 2012; Lindsay & Gaskell,
2013). Complementary learning systems (e.g., O’Reilly, Bhattacharyya, Howard, & Ketz,
2014) accounts of memory offer a framework for understanding this pattern: newly-learned
words may be initially stored in a fast-learning hippocampal-dependent memory system,
then more slowly integrated into the neocortical lexical-semantic system. Implementing
this mechanism within models of spoken word recognition would require a more complex
notion of the “mental lexicon” and would open the door to new predictions based on the
complementary learning systems framework that could help to refine our understanding of
how spoken word recognition interacts with learning and memory systems.

5 Toward a More Complete Model of Spoken Word Recognition

The TRACE model and SRNs have served as very powerful computational frameworks for
understanding spoken word recognition. They account for dozens of behavioral phenom-
ena, including some that were documented after the development of these models. These
successes have relied, in part, on detailed investigations of a relatively narrowly-defined
computational problem: identifying a lexical target from phonological input. After more
than a quarter-century of highly productive behavioral, computational, and neuroscience
research, it may be time to expand what we mean by “spoken word recognition”. This
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chapter has identified four particularly promising domains for expansion based on their
wealth of behavioral evidence and computational tractability.

First, whether isolated lexical representations exist or not, they are certainly not the end
result of spoken word recognition, which is influenced by semantic, syntactic, and pragmatic
factors. The TRACE model and SRNs are part of the PDP framework and other PDP
models have already been developed for semantic (e.g., Rabovsky & McRae, 2014; Rogers
& McClelland, 2004; Rogers et al., 2004) and syntactic (e.g., Altmann & Mirković, 2009;
McClelland, St. John, & Taraban, 1989) processing, so integrating these models to develop
a model of spoken word comprehension in sentence and discourse contexts is a natural next
step.

Second, modeling speech input as a clear and unvarying signal has misrepresented the dy-
namics of real-world spoken word recognition and may have distorted our theories of spoken
word recognition. There has been tremendous progress in automatic speech recognition
(e.g., Cutajar, Micallef, Casha, Grech, & Gatt, 2013) and in understanding the relationship
between speech perception and speech production (Hickok, 2012). A few computational
modeling efforts have attempted to take advantage of perception-production links (Plaut &
Kello, 1999) and insights from automatic speech recognition (Scharenborg, Norris, Bosch,
& McQueen, 2005) and machine learning (Hannagan, Magnuson, & Grainger, 2013), but
these approaches have not yet had wide-spread impact on models of spoken word recogni-
tion. The combined effort to include higher-level factors (semantic, syntactic, pragmatic)
and lower-level (acoustic/auditory) factors will also move models of spoken word recogni-
tion away from stipulated representations and toward emergent representations, providing
greater insights into the mechanisms involved.

Third, cognitive control functions are often invoked to explain phenomena in spoken word
recognition with relatively little effort to specify these mechanisms or how they interact
with spoken word recognition mechanisms. A prime example is “inhibition”, which can be
used to refer to a property of the spoken word recognition system (e.g., inhibitory weights
in the TRACE model), a cognitive control function (i.e., inhibitory control), or a general
property of cognitive processing (i.e., “interactive activation and competition”). Perhaps
inhibition is all three of these (a general property of cognitive processing, modulated by
a cognitive control system, and playing an important role in spoken word recognition),
but appeals to underspecified cognitive control mechanisms are generally not falsifiable
and hold back development of theories of spoken word recognition. There are already
quite detailed cognitive and neural models of cognitive control, and inhibitory control in
particular (e.g., Munakata et al., 2011), which could potentially be integrated with models
of spoken word recognition.

Fourth, models of spoken word recognition have been remarkably successful at capturing
some aspects of learning in spoken word recognition but these efforts have been largely di-
vorced from the broader cognitive, neurobiological, and computational research on learning
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and memory. TRACE models and SRN simulations have given us new insights into how
learning new words affects spoken word recognition, but little insight into what it means
to learn new words in relation to other kinds of learning and memory.

These four “zones of proximal development” are the most promising domains for expand-
ing models of spoken word recognition, providing new insights into the mechanisms and
representations that support spoken word recognition and making connections with other
domains of perceptual and cognitive processing.
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