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A bstract. Catastrophic interference is addressed as a problem that arises from
pattern-based learning algorithms. As such, it is not limited to arti�cial neural net-
works but can be demonstrated in human subjects in so far as they use a pattern-based
learning strategy. The experiment tests retroactive interference in humans learning
lists of consonant–vowel–consonant nonsense syllable pairs. Results show signi�cantly
more interference for subjects learning patterned lists than subjects learning
arbitrarily paired lists. To examine how different learning strategies depend on the
structure of the learning task, a mixture-of-experts neural network model is presented.
The results show how these strategies may interact to give rise to the results seen in
the human data.
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1. Introduction
1.1 Catastrophic interference in neural network s
McCloskey and Cohen (1989) and Ratcliff (1990) were the first to investigate
thoroughly catastrophic interference (CI) in neural networks. They found that when
feedforward neural networks using the backpropagation learning algorithm
(Rumelhart et al. 1986) were trained sequentially they exhibited a ‘catastrophic’ level
of interference. Training in these networks consists of presenting inputs, calculating
the error function (difference between network output and target output) and
performing a gradient descent to minimize the error function. Sequential training
refers to completely training (until error is reduced below a criterion) the network on
an input–output set and then training on another set. This type of training contrasts
with interleaved training in which items from both lists are mixed together during
training. Importantly, no signi�cant interference effects are seen during interleaved
training, indicating that CI is limited to sequential learning.
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Several researchers have developed learning algorithms that alleviate the problem
of CI in sequential learning (see French 1999 for a recent review). In general, these
models strive to reduce the extent to which the hidden layer representations are
distributed (French 1992, Kruschke 1992, Sharkey and Sharkey 1995). Kruschke’s
(1992) ALCOVE model was able to avoid CI by employing a localization algorithm
for hidden node activation:

where aj is the jth hidden node activation, ai is the activation of the ith input node, a i
is the attentional weight, c is a hidden node speci�city parameter and h

ji
is the ith

coordinate for the position of the jth hidden node. For each hidden node there is a
vector, which can be thought of as a set of coordinates for the position of the hidden
node. This ‘position’ speci�cation allows a hidden node to be localized to a speci�c
input pattern. ALCOVE is a special case of a general class of networks known as
radial-basis function networks (Poggio and Girosi 1990). This type of network has
hidden nodes whose activation is a function (typically a Gaussian) of the distance
between hidden node location and the input vector. In Kruschke’s model there 
was one hidden node for each input pattern and each hidden node had a ‘position’
vector corresponding to one of the input patterns. Thus, it could be ensured that 
only one hidden node would be active for each input pattern and (with appropriate
a  and c values) that that node’s activation would be 1, while all the others would be
0. This model reduces the distributed nature of the hidden layer’s representation 
of the inputs; it localizes it, and in the extreme makes the representations perfectly
non-overlapping.

It is important to note that while extreme localization of the input patterns will
remove CI it will also remove some of the most interesting and useful properties of
these types of neural networks, namely, generalization and representational ef�ciency.
A neural network utilizing non-overlapping representations will have no repre-
sentation of functional similarities between inputs. For example, if such a network is
trained to categorize robins and canaries as ‘birds’, and oaks and pines as ‘trees’, there
will be no more similarity between the representations for robin and canary than for
robin and oak because each of the representations will have no overlap with the others
(McClelland et al. 1995). Furthermore, suppose that the network has been trained to
know that both robins and canaries, aside from being birds, have wings and can �y.
Then the network is presented with a novel item such as a sparrow and trained to
know that a sparrow is a bird. A network using overlapping, distributed represen-
tations will be able to guess that sparrows have wings and can �y, however, a network
using non-overlapping representations will not.

French (1992) noted this trade-off between reducing CI and reducing a network’s
ability to generalize. His solution was a semi-distributed network that strives for 
a balance between the extremes. He used a node sharpening technique that imposed
fewer restrictions than Kruschke’s localizations but accomplished a similar reduction
in overlap of hidden node representations. For each input pattern, a hidden node
representation was calculated using standard feedforward procedures, then this
activation was used to produce target hidden node activations which were less distrib-
uted. This target was produced by ‘sharpening’ the activation for the k most active
hidden nodes according to the formulae:
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A new = A old + a (1–A old) for the k nodes to be sharpened
A new = A old – a A old for the other nodes

where a is the sharpening factor. The difference between the target activation and the
actual activation was used to adjust the input to hidden layer weights. Then the input
pattern was fed forward from input to output and all the weights were adjusted
according to standard backpropagation of errors (Rumelhart et al. 1986).

To analyse the performance of this type of learning algorithm, French trained a
model with eight input, eight hidden and eight output nodes on a set of 11 associations.
After this training session, the network was presented with a new association, and
after it had learned the new association it was tested on an association from the 
�rst set. The model generally performed poorly if output was compared to the target
output. However, a more sensitive measure of forgetting was examined: the number
of presentations required to relearn the association. In this evaluation a strong
relationship between the number of nodes sharpened and the amount of forgetting
was found. A standard backpropagation network without node sharpening required
more than four times as many presentations to relearn the association as a one-node
sharpened network, and the two-node sharpened network performed even slightly
better. If more nodes were sharpened, the number of presentations required to relearn
began to increase until with four- and �ve-node sharpening the network was no better
than the standard. To evaluate the original hypothesis, hidden node activation overlap
was examined and was found to be at a minimum for one-node sharpening, and to
increase steadily, reaching the standard level at four-node sharpening.

French then used real-world data in the form of voting records to test the algorithm.
A network was designed to categorize inputs into one of two categories (Democrat/
Republican) based on voting records from 16 issues (a yes vote was coded as a 1 and
a no as a 0 in the input vector). The network showed improvement in relearning time
(although the improvement was only moderate compared with the earlier experiment)
and showed high generalization ability that was independent of the number of nodes
sharpened.

Sharkey and Sharkey (1995) analysed the problem of CI and concluded that the
solution lies in localization of hidden node representations. Their proposed solution
is a generalization of the previously discussed models. The HARM model divides the
learning task into two subtasks. The �rst subtask is to eliminate overlap in the input
patterns such that each one is mapped to a unique hidden node. The second subtask
is to produce the appropriate output from the hidden nodes. Since the hidden node
activation patterns are non-overlapping, this task can be accomplished with a single
weight matrix and Hebbian learning. This general model design can be applied to
many different learning algorithms since the effects of the functions are speci�ed and
not the mathematical details. That is, any localizing learning rule can be used in the
�rst step. This includes Kruschke’s (1992) node localization and French’s (1992) node
sharpening algorithms that produce orthogonal hidden node representations if
appropriate parameters are used (Kruschke: a =l, c=l0; French: k=l).

One weakness of this model is that for an input vector of length n, 2n hidden nodes
are required. Since localization is the extreme of reduction of hidden node overlap,
any model that strives to reduce distribution of hidden node representations would
face this constraint in eliminating CI. Of course, if the number of input patterns is
known, only that many hidden nodes are required, but for some applications this is
not a reasonable constraint. Furthermore, this sort of localizing-associating model of
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human memory may seem unsatisfactory to cognitive psychologists who consider
human memory to be more complex than a simple look-up table. That is, human
memory exhibits properties that are not well modelled by a look-up table, such as
generalization (Shepard 1987), rule abstraction (Simon and Kotovsky 1963, Restle and
Brown 1970), hierarchical organization of sequences (Jones 1974, Deutsch and Feroe
1981) and chunking (Miller 1956). None the less, it should be noted that researchers
such as Hintzman (1984) have argued in favour of look-up table models of memory
and implemented them to model successfully many aspects of human memory.

Some researchers have attempted to solve the problem of CI with models based
on learning strategies used by humans. McRae and Hetherington (1993) argue that
humans do not undertake new learning tasks with randomly set weights; instead 
we bring a wealth of previous knowledge to a task and this helps us avoid large inter-
ference. To simulate this previous knowledge, the researchers pretrained a network
on patterns similar to the patterns on which it was to be tested. The pretraining
technique was tried on a small network using simple pattern learning and on a large
network using a set of 2897 patterns from Seidenberg and McClelland’s (1989) model
of word naming. This pretraining was thought to provide the network with something
comparable to knowledge of the English language. The model was then tested on
CVCs (consonant–vowel–consonant sets) constructed following the same rule as the
words in the pretraining corpus. The performance of pretrained and naïve networks
on three different sequential learning tasks was compared.

It was found that pretrained networks suffered from no interference during these
tasks. The error increase above training criterion was six times greater for naïve
networks than for pretrained ones. The activation of the hidden layer was also
examined and it was found that pretrained networks used fewer hidden nodes to
represent each input pattern, meaning that the representations were less distributed.
Thus, while these researchers did not set out to localize the hidden layer repre-
sentations, they ended up with networks that were moving in that direction. It is
important to note that although the representations were less distributed, they were
still partially overlapping, yet the results were better than many previous experiments.
This suggests that representational overlap may be an imperfect measure of hidden
node overlap and a more accurate measure should be employed in analysing the
causes of CI.

Rehearsal is another approach derived from studying human learning. Ratcliff
(1990) used a rehearsal buffer consisting of three previously learned items and one
new item to train his network. Once this set had been learned to criterion, one of the
items was replaced with a new item. This process continued such that the training set
always consisted of the three most recently learned items and one new item. This
technique improved performance by a small amount and was not thought to be very
signi�cant.

More recently, Robins (1995) conducted more extensive simulations using different
rehearsal algorithms and found that some were much more effective than Ratcliff’s
(1990) recency rehearsal. In these simulations, three previously learned items were
trained concurrently with the new item, but the way those three items were selected
from the trained corpus was varied. Random rehearsal refers to a random selection
of items from the trained corpus and those items are trained with the new item for the
number of epochs required to reach criterion. Sweep rehearsal uses a ‘dynamic’
training buffer: for each training epoch three items are randomly selected from the
trained corpus for training with the new item; for the next epoch three new items are
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selected from the trained corpus. In comparing these two algorithms it can be said that
random rehearsal provides ‘narrow and deep’ training, while sweep rehearsal provides
‘broad and shallow’ training. The results were impressive—random rehearsal showed
only small interference and sweep rehearsal showed no interference and actually
improved performance on some items while new ones were being learned.

Even with this effective form of rehearsal, the algorithm relies on the network
having access to the entire trained corpus at all times. For many applications, including
the modelling of human memory, this is not reasonable. Robins (1995) also tested 
a technique he called ‘pseudorehearsal ’. Pseudorehearsal assumes that the net-
work does not have access to the items it has already learned and so it must produce
pseudo-items. Pseudo-items are produced by generating a random input vector of
ones and zeros and feeding it through the network. The output becomes the associated
target vector. This pseudo-population acts as a map of weights in the network before
training on a new item begins. The size of the pseudo-population was found to have
a significant effect on the effectiveness of sweep rehearsal, with bigger popula-
tions producing less interference. Both sweep and random rehearsal were more
effective than pseudorehearsal, but with suf�ciently large pseudo-populations, sweep
pseudorehearsal showed only a small amount of interference. These simulations show
that examination of human learning behaviour can be as effective at improving
connectionist models as studying their mathematical mechanics.

1.2 Retroactive interference in humans
In humans, the forgetting of previously learned information after new learning has
been termed retroactive interference (RI) and is very small compared to the CI of
neural networks. Barnes and Underwood (1959) demonstrated RI using the AB–AC
paradigm: subjects were trained to respond with adjective B to nonsense syllable A
(from Glaze 1928) until they learned eight AB pairs. Then they were trained to
respond with a different adjective C to the same nonsense syllable A. The number of
AC list learning trials was varied (1, 5, 10, 20). Then the subjects were asked to give
both the B and C adjectives in response to A. A–B list performance was seen to
decrease as the number of A–C list learning trials increased, but even at the maximum
(20) the performance was near 50%—well above CI performance, which is typically
near 0% (McCloskey and Cohen 1989, McClelland et al. 1995).

McClelland et al. (1995) argue that it is the complementary learning systems of
hippocampal structures and the neocortex that prevent CI in humans. This argument
is motivated by neurobiological evidence and supported by connectionist models.
They suggest that at first sequential learning is handled by more or less localized
representations in the hippocampus, which then trains the neocortex over a long
period of time with new as well as old items so that the neocortex can form distributed
representations of the entire corpus of knowledge. French (1997) and Ans and
Rousset (2000) have also developed connectionist models of complementary learning
systems incorporating the technique of pseudorehearsal (Robins 1995). However,
these accounts may not address short-term learning tasks of the type studied by Barnes
and Underwood (1959).

Although CI in tasks often modelled with neural networks has not been demon-
strated in biological systems, a few researchers have found effects that are similar 
in rat perception of time duration (French and Ferrara 1999) and human motor
memory (Shadmehr and Brashers-Krug 1997). French and Ferrara (1999) trained rats
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to expect food pellets at 40-s intervals and at 8-s intervals. If the rats were trained 
�rst on one duration and then on the other they continued to expect the food pellet
at the latter duration. Conversely, if the rats were trained on both durations
concurrently (i.e. interleaved training) their response was clearly bimodal, showing
expectation at both time intervals. Thus, sequential training led to memory of the last
set only, while interleaved training led to learning of both sets.

Shadmehr and Brashers-Krug (1997) found in humans that if training sessions with
two con�icting mechanical environments were not separated by about 5 h, the learning
of the second would ‘overwrite’ the �rst: learning of the second would take longer
(indicating that learning started with a representation of the �rst rather than a ‘tabula
rasa’) and would interfere with recall of the �rst. This is analogous to CI in that CI
results from encoding new representations over previously learned representations,
producing large interference effects.

1.3 H ierarchical modular connectionist architectures
Some aspects of human cognition seem to rely on modular processing and some
researchers have attempted to take advantage of modular neural processing to
develop more robust and accurate models. In particular, models of multispeaker
phoneme recognition (Hampshire and Waibel 1992) and ‘what-where’ vision tasks
(Jacobs et al. 1991, improved algorithm in Jordan and Jacobs 1994) have been
improved by the use of modular connectionist architectures. Modular connectionist
architectures are connectionist models that have sub-networks which compete to
represent input–output pairs. A gating network outputs a coef�cient vector; these
coef�cients are used by the output layer to combine the sub-network outputs to make
a �nal output. In the extreme competitive case the coef�cient vector has one 1 and 
all the other values are 0, in a more co-operative model the values can vary so that 
the �nal output can be a weighted sum of the sub-network outputs.

The finding of Jacobs et al. (1991) that is most relevant here is that a modular
connectionist network with architecturally different sub-networks will partition 
the learning task in a way that takes advantage of the different properties of the
architectures of the sub-networks. The input was a single vector of 25 pixel values
and a task specifier; however, the network divided what and where processing to
different sub-networks. Thus, the network learned to dedicate its separate modules
to ‘what’ and ‘where’ vision tasks, analogous to ventral and dorsal visual pathways in
the primate brain (Mishkin et al. 1983).

2. Experiment
Let us assume that humans are capable of at least two kinds of learning strate-
gies: pattern-based (Restle and Brown 1970, Jones 1974) and rote memorization
(Hintzman 1984). This assumption seems intuitively correct in that there are some
learning tasks that require arbitrary associations (such as face-�rst name association)
and some that follow set rules (driving a car). These two strategies differ along two
dimensions: generalization and resource limitations. Pattern-based learning is
relatively resource ef�cient and allows for generalization to similar situations (e.g.
once a person learns to drive a car, that person can drive any similar car); on the other
hand, rote memorization requires more resources and does not allow generalization
(e.g. people that look similar do not necessarily have the same first name). These
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differences are analogous to differences between neural networks using distributed
and localized representations, with distributed representations being the analogue of
pattern-based learning, and localized representations that of rote memorization.

Three statements can be made based on the described studies and the above
assumption:

(1) The subjects in Barnes and Underwood’s study (1959) used rote memorization
and suffered only minor interference analogous to the small amount of
interference suffered by networks using learning algorithms that orthogonalize
hidden node representations (French 1992, Kruschke 1992, Sharkey and
Sharkey 1995).

(2) An experiment that presents subjects with a learning task suitable for pattern-
based learning should produce increased interference.

(3) A modular connectionist architecture should be able to model the interaction
of these two learning strategies.

The �nal two propositions are the goal of the present study: this section addresses
statement (2) the Simulation section addresses statement (3).

2.1 M ethods
2.1.1 Participants. The subjects were 32 students at Cornell University who
participated in exchange for extra credit in Psychology and Human Development
courses.

2.1.2 Stim uli and procedure. Instructions, stimulus presentation and testing were
conducted on computer using PsyScope software (Cohen et al. 1993). Each subject 
was shown list A, containing 10 nonsense syllable (CVC) pairs chosen to minimize
associative value according to Glaze (1928) and to remain pronounceable. To maxi-
mize similarity to neural network training, the 10 pairs were presented one at a 
time for 5 s each, cycling through the entire list four times. The entire training time
for list A (including 700 ms pauses between CVC pairs) was about 4 min per list. Then
the subjects were shown the �rst member of each pair and asked to choose the correct
match from two possible choices. Although this forced-choice paradigm does not
exactly re�ect the network’s task, it allows the greater advantage of knowing the exact
chance performance so that the data are easier to interpret. This �rst test contained
18 probe items with two choices for each one. The additional eight test items were used
to test for generalization, and to match the second test. Items from the learned list and
generalization items were mixed randomly on the test. Subjects were instructed to
skip syllables that they did not recognize (both in the instructions displayed before
beginning the experiment and verbally in the case that they asked the experimenter).
The learning procedure was then duplicated with list B, which contained 10 new CVC
pairs. Finally, subjects were tested on both lists, using a test of exactly the same format
as the �rst test. This test also contained 18 items but the extra items were from the �rst
list rather than generalization probes.

Subjects in the control condition were shown lists consisting of arbitrarily paired
CVCs. Presumably learning of this list would require rote memorization and would
not be as susceptible to interference as the pattern-based experimental lists. The
experimental lists consisted of CVCs paired according to a simple rule: on one list the
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CVCs followed an inversion pattern (VEC–CEV), on the other list they followed a
vowel exchange pattern (KIZ–KEZ, GAK–GOK) (see the Appendix).1 One half of
the experimental subjects received the inversion list �rst and the vowel exchange list
second, the other half received them in the opposite order. During control condition
testing, an item would be presented with the correct response and a random distracter
CVC, and the subject chose one alternative. During experimental condition testing,
an item would be presented with the appropriate alternatives according to the two
different patterns, and the subject chose one alternative. Thus, the experimental test
task was reduced to identifying the source list of the presented CVC and applying the
corresponding pattern.

2.2 Results
On the �rst test, subjects in the pattern-based learning condition made fewer errors
than control subjects (experimental: 0% pre-interference error; control: 5.3% pre-
interference error). However, after the second list (interference list) was learned, they
made more errors than control (experimental: 17.0% post-interference error; control:
8.2% post-interference error; �gure 1). A main effect of list was found (F(1,30)=18.16,
p<0.001) confirming that, overall, subjects showed decreased performance (retro-
active interference) after the second list was learned. Most importantly, the condition
X list interaction corresponding to a difference in interference effects was found to
be signi�cant (F(1,30) =9.07, p<0.01).

Additionally, it was found that, on the �rst test phase, subjects learning pattern-
based lists attempted to generalize more frequently than subjects learning lists without
patterns (experimental: 6.3 mean generalizations; control: 3.6 mean generalizations;
t(30) = 2.63, p < 0.02; �gure 2) and, of course, did so much more accurately (experi-
mental: 6.2 mean correct generalizations; control: 1.8 mean correct generalizations;
t(30) = 5.56, p < 0.0001; �gure 2). For the experimental condition, a generalization was
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considered correct if the response followed the pattern; for the control condition a
response was arbitrarily assigned as correct. Obviously, attempts to generalize in the
control lists were arbitrary, and accuracy was at chance. Since subjects were instructed
not to generalize, that they did generalize suggests that they were encoding a general
mapping rather than speci�c pairs from the list.

2.3 D iscussion
This experiment showed that human subjects learning lists with simple patterns were
susceptible to greater retroactive interference than subjects learning lists of arbitrarily
paired CVCs. Two �ndings suggest that the experimental subjects used a learning
strategy resembling pattern-based learning, while control subjects used a rote
memorization strategy:

(1) Patterned list subjects generalized much more than control subjects.
(2) Every patterned list subject responded correctly to 100% of first list items

before interference, while control subjects averaged 94.7% correct (F(1,30) =
7.47, p < 0.05) and showed much greater variability.

If it is true that experimental subjects used a pattern-based learning strategy while
control subjects used a rote memorization strategy then the increased retroactive
interference (�gure 1) can be seen as resembling CI in neural networks. However,
considering that 50% correct would be chance performance on this task, the 83%
post-interference correct responses from experimental subjects is far from the results
of CI where performance typically drops to chance. The most likely explanation is that
experimental subjects did not use fully distributed and overlapping representations
but rather semi-distributed representations. As shown by a number of investigators
(French 1992, Kruschke 1992, Sharkey and Sharkey 1995), representational overlap
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forms a continuum from fully localized (only one node active in representing each
input vector) to fully distributed (every node active in representing each input vector),
and CI varies along this continuum in direct proportion to the amount of overlap.
The most likely conclusion, then, is that experimental subjects fell on this continuum
significantly closer to distributed representations than control subjects and thus
showed increased CI. We suggest that this continuum is valid for humans as well as
arti�cial neural networks and that—depending on the structure of the learning task—
human subjects will exhibit learning and forgetting behaviour that varies along this
continuum. This means that connectionist networks are valuable tools for modelling
human memory despite differences in interference behaviour and, in particular,
modular architectures that allow for selection/competition among different learning
strategies appropriate to the structure of the learning task may be appropriate models
of human learning and memory.

3. Simulation
3.1 T he model
Along the lines of the mixture-of-experts networks (e.g. Jacobs et al. 1991), the Dual-
Strategy Competitive Learner (DSCL) is composed of two sub-networks and a gating
network. Each of the sub-networks represents an ‘expert’ in that it has a unique
architecture and learning algorithm making it differentially effective based on the
learning task. The gating network is trained to decide which expert is the correct one
for a given input; that is, which sub-network’s output will be used as the overall output
(�gure 3).

The input layer has 15 units. One of the sub-networks is a standard backprop-
agation network (Rumelhart et al. 1986) with 10 hidden units. The other sub-network
is an implementation of ALCOVE (Kruschke 1992) with 20 hidden units, each
dedicated to one of the 20 input patterns (10 from each list). The gating network is
also a backpropagation network with 10 hidden nodes which outputs a two-element
bit vector designating which sub-network will be used as network output (i.e. [1 0] for
expert 1, [0 1] for expert 2). Network constants are given in table 1.
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Each list of inputs consists of 10 15-element bit vectors. The target outputs are 
also 15-element bit vectors. Control lists are arbitrarily paired bit vectors while
experimental lists followed a pattern, with a different pattern represented in the �rst
list and the interference list. An auto-associative pattern (each target is the same 
as its input) was used for list A and a 0–1 inversion pattern (0s become 1s and vice
versa) for list B (see table 2 for examples of input–target pairs). In designing the 
CVC experimental lists patterns were chosen that subjects found easy to recognize;
similarly, in designing the experimental inputs for the network patterns were chosen
that would be easy for the network to encode.

Training consisted of presenting an item in the list to all three component networks,
calculating error for each sub-network and adjusting weights according to the
appropriate learning algorithm in the expert sub-network which showed least error—
this expert was called the winner. Finally, the gating network was trained to choose
the winner’s output as the overall network output for this input vector. This procedure
was repeated for each vector in the training list. In this manner the list was presented
30 times (i.e. 30 epochs). For comparison, a standard backpropagation network was
trained on the same input/target patterns using 30 epochs and 100 epochs.

First the network was trained with list A, then it was tested with list A (to measure
pre-interference performance) and with a different, generalization list. For the control
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Table 1. Network constants used in DSCL.

BackProp expert learning rate 0.2
BackProp expert momentum 0.9
ALCOVE expert attention learning rate 0.001
ALCOVE expert association learning rate 0.3
ALCOVE expert speci�city constant 2
Gating network learning rate 0.1
Gating network momentum 0.9

Table 2. Some examples of inputs and targets used to test DSCL.a

List name Input Target Per cent pairs won 
by ALCOVE

00010001001000 0 10000100001000 0
Contro1 10000010000000 1 00100001000000 1 75.2

01000001000001 0 00100001000100 0

11111100000000 0 11111100000000 0
Auto-associative 01111110000000 0 01111110000000 0 8.6

00111111000000 0 00111111000000 0

10101000000000 0 01010111111111 1
Inverse 01010100000000 0 10101011111111 1 0.0

00101010000000 0 11010101111111 1

a The right column shows the per cent of pairs won by ALCOVE. Control (arbitrarily paired) lists
are won mostly by ALCOVE, the patterned lists are won almost entirely by the backpropagation
expert.



case, the generalization list also had arbitrarily paired inputs and targets. For the
patterned case, the generalization list input and target vectors followed the same
pattern as the training list. In this way it was possible to test whether the pattern
learned during training could be generalized to novel vectors in the same way that
human subjects generalized patterns learned during training to novel CVCs. Following
these tests, the network was trained with list B and tested with list B and list A (to
measure post-interference performance).

The DSCL was initialized to a random state before starting control or experimental
training. This was done so that strategy choice would be determined by the network
itself (in the form of winner selection by the gating network) based on the type of
input it saw; just as the subjects chose their strategies based on the type of stimuli they
saw.

3.2 Simulation result
Network performance was measured primarily by per cent of inputs for which the
network would generate the incorrect output vector. An output was judged as correct
only if each node’s activation was on the target side of 0.5 (i.e. less than 0.5 for a target
of 0, greater than 0.5 for a target of 1.0). However, with 15-bit output vectors this is a
very dif�cult task (chance performance being about 0.003%, compared to 50% for the
human subjects’ task), so in some cases it was useful to look at mean squared error
across the input patterns.

Reported DSCL results are averages of at least 40 runs (�gure 4). Performance
was very similar to humans—showing much larger interference in patterned lists than
control (arbitrarily paired) lists. An examination of the gating network outputs
(winners, �gure 5) shows that ALCOVE won most of the control (unpatterned) pairs
and the backpropagation network won most of the patterned pairs.2

A backpropagation network trained by itself, for comparison, did not show any
difference in amount of interference between control and patterned lists when per 
cent correct was used as a performance measure (�gure 6), but it did show a differ-
ence when the more sensitive mean squared error performance measure was used
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Figure 4. DSCL performance measured by per cent error. The experimental (patterned pairs)
condition shows more interference compared to control (arbitrary pairs).



(�gure 7). However, even after 100 training epochs the difference did not show up in
per cent correct.

Generalization results were supportive in modelling human behaviour by showing
increased accuracy on experimental lists over control lists. The effect was particularly
noticeable if mean squared error was used as the performance measure (�gure 8), per
cent correct showed only a very small difference between control and patterned list
generalization ability (�gure 9). The standard backpropagation network performed
almost as well on the generalization tasks, which is not surprising since it is the
backpropagation expert in DSCL that is responsible for generalization.
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Figure 5. Per cent of each list’s items won by ALCOVE. The control lists are won mostly by
ALCOVE, the pattern lists are not (they are won by the backpropagation network).

Figure 6. Performance of standard backpropagation network on control and experimental lists 
measured by per cent error. Post-interference performance is the same across lists.



3.3 D iscussion
Network performance simulated human performance in showing increased retro-
active interference for patterned lists over arbitrarily paired lists. In a recent study,
Erickson and Kruschke (1998) modelled categorization using a modular architecture
consisting of a rule module, an exemplar module and a competitive gating mechanism.
They found that this model (called ATRIUM) accurately captured the interaction 
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Figure 7. Performance of standard backpropagation network on control and experimental lists
measured by mean squared error. Post-interference performance is clustered by list type with 

control lists having lower error.

Figure 8. Generalization performance measured by l/(mean squared error). Performance is 
higher for the experimental (patterned) case.



of rule- and exemplar-based categorization behaviour. This model bears a strong
architectural resemblance to the model presented here for modelling human paired
association learning and interference. However, there are two crucial differences:
Erickson and Kruschke’s (1998) human experiments present the rules explicitly, thus
they use a rule module that explicitly represents the rule. In the present study human
subjects extracted the patterns from the lists of CVCs without being instructed to do
so. Thus, the model is designed to and succeeds in extracting patterns from the input–
target vector pairing without explicit rule presentation. In addition, the ATRIUM
gating mechanism takes input from the exemplar module (ALCOVE) and returns 
an output that represents the extent to which the exemplar module is the one used,
that is, the �nal ATRIUM output is a linear combination of the outputs of the rule
and exemplar modules. Conversely, the DSCL gating mechanism takes the same input
as the sub-networks and outputs binary values such that the �nal network output is
the output of one of the sub-networks, not a combination of them.

4. General discussion and conclusions
It has been suggested that because certain connectionist networks suffer catastrophic
interference they are not viable models of human learning and memory (McCloskey
and Cohen 1989). Interpreting CI as a result of pattern-based learning led to a retro-
active interference experiment in association of CVC pairs. The experiment showed
that human subjects exhibit significantly greater interference when the CVCs are
paired according to an obvious pattern. Initially, this suggests that CI may not be
grounds for discounting these types of networks as viable models of human memory.
The results are also consistent with the hypothesis that humans use different learning
strategies depending on the material to be learned. In particular, humans use a pattern-
based learning strategy when it is appropriate and this strategy is more susceptible to
retroactive interference.

An extension of pattern-based learning is the ability to generalize, which is not
afforded by rote memorization (the alternative learning strategy in this experiment).
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Figure 9. Generalization performance measured by per cent correct. Performance is higher for 
the experimental (patterned) case.



Human subjects learning patterned lists were found to generalize more frequently
and more accurately than control subjects.

The interplay of the two learning strategies was modelled by DSCL, a competitive
hierarchical modular neural network using backpropagation (Rumelhart et al. 1986)
to model pattern-based learning and ALCOVE (Kruschke 1992) to model rote
memorization. Per cent correct performance of the network approximated human
performance. In addition, the network modelled human generalization results by
showing less generalization error on patterned lists.

The results of the human experiment raise a few interesting questions and suggest
possible follow-up experiments. (1) Is the choice of learning strategy under subjective
control? That is, would it be possible to get the same results by presenting subjects 
with patterned lists and instructing one group to use a pattern-based strategy while
instructing the other group to ignore the pattern? (2) How robust is the pattern-
learning strategy? Would it work for more subtle patterns or imperfect patterns
(patterns with exceptions)? Could it be that there is a continuum of ‘patternhood’, and
the extent of pattern-based learning (and, consequently, the extent of interference)
varies along it? (3) Is this effect speci�c to language or is it possible to replicate these
results using non-language stimuli—pairing shapes and colours, for example?

This study shows that human memory is not easily described as a single simple
process—in some cases it looks like a look-up table or rote memorization, while under
different circumstances it looks like pattern extraction or function approximation. It
is found that catastrophic interference is not limited to connectionist architectures
but is a general product of pattern-based learning that occurs in humans as well. It can
be seen in neural networks that perform function approximation and in humans 
when they use a pattern-based learning strategy rather than a rote memorization
strategy, as is studied in most memory experiments (e.g. Barnes and Underwood
1959). These two learning strategies can be modelled by two different arti�cial neural
network architectures, which account for a number of effects, including increased
interference and increased generalization ability in pattern-based learning. These
different neural network architectures can be put together in a competitive modular
super-network that simulates the two different modes of human learning examined
in this experiment.
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Notes
1. Some partial overlap in the items from the two experimental lists (e.g. GOW in the inversion list and

GOK in the vowel switch list) was unavoidable because of the limited set of nonsense CVCs with low
associative value. However, this was preferable to using the AB–AC training format of Barnes and
Underwood (1959) because it more closely approximates the typical neural network training
procedure.

2. Interestingly, some patterned lists were not recognized as such if they were too sparse (e.g. only three
units active in a 15-node vector). Presumably, backpropagation cannot recognize patterns if they are
too sparse.
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A ppendix: Experiment stimuli
Control list 1: Control list 2:

ZOS CEJ VEK FEP
CIJ ZAH CEV KIV
KEF TUZ BIP ZAT
VAZ VOZ NIZ JID
VEC FOY GIK KIZ
GOK KEB GEZ KEZ
DIJ GAK ZIN GEK
HEG JEH GUK JEC
ZEG JIH TUV VUT
WUB ZOT PEF JEZ

Inversion: Vowel switch:

GOW WOG JIH JEH
JID DIJ ZAT ZOT
NIZ ZIN ZOS ZAS
KUG GUK FEH FIH
TUV VUT ZOH ZAH
VUK KUV GEK GIK
YOF FOY GOK GAK
FEP PEF VAZ VOZ
GEZ ZEG CIJ CEJ
CEV VEC KEZ KIZ
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