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Abstract This study analyzed distributions of Euclidean
displacements in gaze (i.e. “gaze steps”) to evaluate the
degree of componential cognitive constraints on audio-
visual speech perception tasks. Children performing these
tasks exhibited distributions of gaze steps that were closest
to power-law or lognormal distributions, suggesting a
multiplicatively interactive, flexible, self-organizing cog-
nitive system rather than a component-dominant stipulated
cognitive structure. Younger children and children diag-
nosed with an autism spectrum disorder (ASD) exhibited
distributions that were closer to power-law than lognormal,
indicating a reduced degree of self-organized structure. The
relative goodness of lognormal fit was also a significant
predictor of ASD, suggesting that this type of analysis may
point towards a promising diagnostic tool. These results
lend further support to an interaction-dominant framework
that casts cognitive processing and development in terms of
self-organization instead of fixed components and show
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that these analytical methods are sensitive to important
developmental and neuropsychological differences.
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Introduction

Researchers in developmental psychology have long rec-
ognized the importance of considering development in
terms of nested, interactive systems with non-additive,
synergistic effects (Bronfenbrenner 1977, 1986; Baltes
1987; Lerner 1991). One particularly striking example is
research on gene-environment interaction, which shows
that it is insufficient to consider genetics and environment
as separate entities with independent effects. In order to
provide an adequate account of development, the frame-
work must be based on the interaction between genes and
environment (Bronfenbrenner and Ceci 1994; Gottlieb and
Lickliter 2007). Nevertheless, traditional cognitive science
has sought to understand cognition by breaking it down
into separable components such as attention, working
memory, and concept knowledge. On this view, cognitive
development is conceptualized as the evolution of these
discrete components, with individual differences emerging
due to differences in one or more of these components. In
this report, we motivate and describe an alternative ana-
lytical approach that focuses on the dynamics of emergent
structure in multiplicative interaction-dominant systems.
We then present analyses using this method which show
that it is sensitive to important developmental and neuro-
psychological differences, specifically in the case of autism
spectrum disorder (ASD). Finally, we discuss implications
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and future directions for applying such methods to the
study of development and individual differences.

Complex-systems approaches to cognitive science:
component- and interaction-dominance

The appeal of traditional component-dominant theories has
largely to do with methodological expedience: psycholo-
gists have powerful scientific methods for evaluating such
theories and fewer methods for studying interaction-dom-
inant systems. Of course, the component-dominant
approach has been instructive, especially in pointing to the
inevitable need for cognitive science to grapple with
interaction-driven complexity (Bechtel and Richardson
1993). However, componential explanations have been
limited in scope and stand in stark opposition to the
growing evidence of multiplicative, interaction-driven
phenomena in cognitive science (Ihlen and Vereijken 2010;
Stephen and Dixon 2011; Stephen and Mirman 2010;
Holden et al. 2009). Interactive systems that span different
scales are widely found in many domains of physical sci-
ence, and the cognitive system is proving to be no excep-
tion (Chemero and Silberstein in press). The analytical
tools developed in statistical mechanics and computational
biology have begun to prove useful for the study of psy-
chological processes (Riley et al. 2011; Dixon et al. 2011).
In a similar vein, work in physics and thermodynamics
served as key inspiration for the influential parallel dis-
tributed processing (PDP) approach to cognition (Rumel-
hart et al. 1986; Ackley et al. 1985; Hopfield 1982, 1984;
Farmer 1990) and concepts from the domain of complex
systems have influenced major theories of cognitive
development (Elman et al. 1996; Smith 2005; McClelland
et al. 2010).

Complex-systems theories of cognition and cognitive
development have stimulated the adoption of a new con-
ceptual framework for explaining cognition. Instead of
seeking to identify the components of cognition and how
these components develop, the focus has moved to the
processing dynamics governing cognition and their possi-
ble role in the emergence of new self-organized cognitive
structures. These self-organizing processes can be framed
in terms of stabilization or attractor dynamics (e.g., Spivey
2007): a yet un-organized system is flexible and unstable
and able to adopt a variety of possible organizations or
structures; once it stabilizes into a particular structure, it
becomes more constrained and less flexible. Theoretical
frameworks that focus on emergent structure and self-
organization have figured prominently in cognitive and
developmental science (Elman et al. 1996; Smith 2005;
McClelland et al. 2010) and have been applied to a wide
variety of phenomena from infant perseverative reaching
errors (Thelen et al. 2001) to the emergence of new
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problem solving strategies (Stephen and Dixon 2009; Ste-
phen et al. 2009b).

Interaction-dominated, complexity-based cognitive
science

More recently, evidence for the distribution of cognition
across the brain, body, and context has provided new
leverage for a complexity-based approach to cognitive
science. Rather than being locked away in the brain, cog-
nition appears to exhibit rampant sensitivity to effects of
bodily movement, perceptual exploration, and subtle
changes in context (Smith 2005; Chiel and Beer 1997,
Turvey and Fitzpatrick 1993; Barsalou 2008; Lipinski et al.
2009). Further, cognition appears to run on a coordination
of events at various grain sizes across the body. Cognition
has traditionally been understood as unfolding through
bodily processes at various scales, whether through quick
changes like neural firing, slow changes like cortical mat-
uration, or through the anatomical periphery as in manual
coordination (Newell 1990). However, rather than focusing
on neural components, attempts to understand development
of typical and atypical outcomes alike may need to focus
on the high-dimensional connectivities (e.g., Duch and
Dubosz 2011). New evidence of multiplicative interactions
in cognitive performance suggests that these cognitive
processes at different scales of time and space are inter-
dependent (Ihlen and Vereijken 2010). That is, a policy of
reducing the cognitive system to distinctly mental or dis-
tinctly neural components may be ill-advised. Cognition
may depend upon the rich network of multiplicative
interactions that leaves all factors interdependent rather
than independent. In this view, componential additivity
may be the limiting case, and average measures of cogni-
tive performance may be unstable or unreliable (Van Orden
et al. 2003).

The complexity-based approach to cognition as funda-
mentally interaction-dominant depends on closer attention to
the distributions of fluctuations throughout the cognitive
system, not only in the brain but also throughout the body and
the context (Stephen et al. 2009a; Kiefer et al. 2009; Granic
and Hollenstein 2003; Granic and Patterson 2006). That is,
whereas cognitive science has typically proceeded by com-
paring mean values on the assumption of additive, white
Gaussian fluctuations in cognitive performance, cognitive
scientists have become newly concerned with the fact that
fluctuations in cognitive performance often depart strongly
from additive white Gaussian distributions (Holden et al.
2009; Van Orden et al. 2003; Kello et al. 2008, 2010).
Whereas average measures are best for approximating
additive (i.e., component dominant) behavior, the distribu-
tion at large can often be more informative (e.g., Mayr 1959).
Interestingly, changes in the distribution of these fluctuations
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appear to predict important differences in cognitive perfor-
mance (Stephen et al. 2009b, 2010; Stephen and Hajnal
2011). The predictive relationship between fluctuations
distributed across the brain-body-context system and cog-
nitive performance suggests that cognition may not depend
on irreducible, distinctly mental or neural primitives, but
may instead result from non-decomposable interactions
across spatial and temporal scales.

Appearance or disappearance of power-law behavior
as a signature of structural change

One strategy of the interaction-dominant stream of cognitive
research involves testing a continuum of distributions
ranging from normal distributions, reflecting pure compo-
nential structure, to power-law distributions, reflecting pure
interactions and the complete absence of componential
structure (Stephen and Mirman 2010; Holden et al. 2009). To
understand this continuum, consider random numbers (e.g.,
a, b, c,...), drawn from independent uniform distributions. If
very many random numbers are drawn independently and
summed together (e.g., a + b), then the resulting distribu-
tion will be normal. Thus, normal distributions reflect com-
ponential structure: they arise from adding the effects of
independent variables, a case in which the role of each par-
ticipating number is always the same. Exponential and
gamma distributions reflect slight multiplicative distortion
of the additive normal distribution; that is, a system with
weakly interacting components' (Arellano-Valle et al. 2006;

! This weak multiplicative distortion may be expressed in a couple of
ways depending on how the distributions are instantiated. Exponential
distributions can be generated by the sum of the squares of multiple
independent normally distributed variables (i.e., the sum of indepen-
dent components interacting with themselves, that is, accentuating
their own contributions). Gamma distributions are generated by the
sum of relatively few exponential distributions; exponential distribu-
tions are themselves specific cases of gamma distributions. Gamma
distributions may also be generated by dividing the basic exponential
distribution function by the gamma function, a continuous general-
ization of the factorial function (i.e., x!), itself a multiplicative
transformation. As the number of added exponentials increases
towards large limits (i.e., towards the limit of “very many random
numbers” as noted in the main text), the gamma distribution
converges towards the normal distribution. Alternatively, exponential
distributions may be considered as the negative logarithm of uniform
distributions in the range (0, 1). In this light, the sum of relatively few
exponentials composing the gamma distribution is a logarithm of the
product of relatively few uniformly distributed random variables.
Because logarithm of repeated multiplication reduces to repeated
addition of logarithms, the convergence of gamma distributions to
normal distributions holds just the same. Although the values being
added affect some aspects of the distribution, in the limit of very large
sets of random variables or repeated additions, the distribution will
converge to a normal distribution. Thus, in either the gamma or
exponential case, no matter how multiplicativity appears in the
generation of the distributions, it is quashed by repeated addition of
very many random variables (whether those variables are exponential

Kendal 2001). If random numbers are, instead, repeatedly
drawn from uniform distributions and multiplied (e.g.,
a*b*c*...), then a lognormal distribution will be produced.
Lognormal distributions reflect structured interaction-dom-
inant systems because, although the variables are indepen-
dent, their effects depend on the value of the other variables
involved (Holden et al. 2009; Farmer 1990). If the combi-
natorial process is exponentiation (e.g., a”), then a power-law
distribution will arise. This process also relies on multipli-
cation, but now the elements that are multiplied are not
independent: small values are multiplied by small values and
large values are multiplied by large values (Montroll and
Shlesinger 1982). The interdependence inherent in power
law behavior requires that system behavior is interdependent
across multiple levels or scales—a system that has no fun-
damental, characteristic scale? [for a more detailed discus-
sions see Holden et al. (2009); Kello et al. (2010)]. These
distributions vary in their tailed behavior, with power laws
and lognormal distributions bearing relatively heavy tail,
i.e., slow decay of proportions for very large values, with
heavier tails for power laws than for lognormal distributions
(Speranza and Sollich 2003; Mitzenmacher 2004; Eeckhout
2009; Gong et al. 2005; Krishna et al. 2005).

This spectrum can be construed as reflecting the
diminishing plausibility of componential decomposability,
ranging from purely additive dynamics to multiplicatively
interdependent dynamics. Traditional component-dominant
cognitive theories propose essentially constant components
(perhaps with some modulation by learning). If cognitive

Footnote 1 continued

or squared normal). That is, skewed distributions following expo-
nential or gamma form will collapse back towards normal distribu-
tions and thus reflect much stronger additive than multiplicative
relationships among random variables. For this reason, we do not
distinguish whether gamma or exponential distributions reflect greater
or lesser multiplicativity: gamma distributions may be more multi-
plicative in general than in the limiting case of the exponential dis-
tribution if only because they involve dividing probabilities by values
of the gamma function different from 1 (i.e., different from the
multiplicative identity), but their convergence to normal distributions
suggests that this multiplicativity is ultimately negligible in the largest
limits.

2 Lack of a characteristic scale refers statistically to the potential
divergence of the second moment (i.e., variance). Practically, this
point speaks to how confidently we can consider the observed sample
to be representative of the yet unmeasured, unobserved behavior.
Power-law distributions may not have a finite standard deviation, thus
the observed bounds in a particular data set may provide no guarantee
that the power-law distributed system will remain within those
bounds. The summed behavior of a hierarchy of independent
components at different scales may adequately approximate a
particular observed power-law-distributed data set, but this system
would be committed to the finite bounds of the proposed components.
Thus, a multiplicative interdependent system (power-law distribution)
and a hierarchy of additive components (multiple additive normal
distributions) entail different predictions regarding future observed
behavior, both at the lower and upper extremes of the distribution.
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organization is less fixed and more softly-assembled,
components may form and dissolve and re-assemble into
different structures. The degree of organization/re-organi-
zation available to the system represents a continuum of
componentiality, which is inversely related to multiplic-
ativity and interdependence of the distribution of system
behavior. Although both lognormal and power-law distri-
butions are multiplicative, power-law distributions reflect
multiplication of interdependent components whereas log-
normal distributions reflect multiplication of independent
components. Interdependence of components presents a
further challenge for empirical decomposability of com-
ponents (beyond multiplicativity), so power-law distribu-
tions are considered as reflecting a system that is less
componential (though not more multiplicative) than log-
normal distributions. Cognitive structure may be so fluent
and regular as to invite the observation of compositionality
and componentiality. The key difference between compo-
nent-dominant and interaction-dominant views is whether
this observed componentiality reflects the permanent state
of the system (component-dominant) or the emergent result
of a subtle confluence of constraints both from the task and
from the prior history and development of the cognitive
system (Holden et al. 2011; Van Orden et al. 2010).
Cognitive scientists have become interested in what
insights the distributions of cognitive performance might
provide into the structure of the cognitive system. Because
distributions of system behavior may reflect the degree of
componential structure, analysis of these distributions
provides a measure of system stabilization. That is, because
lognormal distributions arise naturally from multiplicative
transformations of independent random variables and
power law distributions arise from multiplicative transfor-
mations of non-independent random variables, lognormal
distributions reflect interactivity between processes under
more additive constraints than power law distributions. For
example, a shift from power-law behavior to lognormal
behavior would reflect the emergence of relatively stable,
functionally independent components and a shift towards
power-law behavior would reflect the breakdown of those
components and loosening of functional constraints.
Precisely this type of pattern has been found in velocity
profiles (i.e., aggregate distributions of Euclidean dis-
placements) of cell motility. In one example, Takagi et al.
(2008) discovered developmental changes in velocity dis-
tributions for Dictyostelium discoideum (or more familiarly,
“slime mold”), which are characterized by generations
of “feast and famine” life cycles. During the “feast”
phase, D. discoideum is unicellular with no differentiable
components; during the “famine” phase, D. discoideum
becomes a multicellular aggregate with distinct anatomical
structures dedicated to specific functions (e.g., locomotion
or navigation). That is, D. discoideum exhibits a transition
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to more componential structure once it begins to starve
(Chisholm and Firtel 2004). Interestingly, Takagi et al.
found that velocity distributions exhibited power-law
structure during the unicellular phase of D. discoideum, and
assumed a more additive distribution, namely the expo-
nential, during the multicellular phase.

Whereas the example of D. discoideum suggests a
relationship between disappearance of power-law distri-
butions and the emergence of componential structure, a
second example dealing with the migration of microglia
through hippocampal tissue following spreading depres-
sion, a neurological perturbation, suggests a relationship
between the appearance of power law distributions and the
disorganization of componential structure (Grinberg et al.
2011). Spreading depression manifests as a temporary (i.e.,
minutes in duration) but abrupt cessation of neural activity
in the brain, beginning in one region and propagating
outwards in all directions. Sometimes a symptom of head
injury, it can contribute to migraines, cerebrovascular dis-
orders, and amnesia (Gorji 2001). Spreading depression
can have severe impact on neurological and cognitive
components by compromising the structural integrity of the
blood—brain barrier (Gursoy-Ozdemir et al. 2004) and the
consolidation of memory (Albert 1966; Bures et al. 1974;
LaMendola and Bever 1997). One of the effects of
spreading depression is to stimulate the migration of
microglia in hippocampal tissue, exhibiting velocity dis-
tributions with power-law form (Grinberg et al. 2011).
Indeed, though microglial migration has been identified as
a reparatory response to injury (Lee et al. 2008), microglia
can have pathogenic effects on neuronal function (Streit
2000; Carbonell et al. 2005). Grinberg et al. suggested that
this power-law distributed microglial migration serves to
heighten susceptibility to later spreading depression over a
wider range of brain tissue. Thus, power-law distributed
migration of microglia may reflect—and possibly later
promote—perturbations to componential structure under-
pinning neurological and cognitive function.

These examples suggest a foundation for interpreting the
presence or absence of power-law distributed fluctuations
in cognitive performance. Namely, complexity science
indicates that the emergence of power-law distributions
reflects a “critical” state of loosened constraints in which
complex systems are sufficiently disorganized to be poised
for a variety of possible new configurations. In this poised
state of criticality, dynamics follow similar, generic (i.e.,
“universal”) laws, regardless of substance (Solé et al.
1999; Stanley et al. 2001; Schertzer and Lovejoy 2004;
Papanikolaou et al. 2011). Evidence of power-law fluctu-
ations in cognitive performance has been a crucial moti-
vation for entertaining the possibility that cognition might
follow the same generic principles as other physical sys-
tems. The current report deals not with cell motility but
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with fluctuations in human gaze during visual cognitive
tasks, and it presents data suggesting that the departure
from pure power-law distribution may indicate the strength
of componential constraints on cognitive function.

Fluctuations in gaze exhibit power-law-like
distributions

Recent studies of eye movements have found that the
distributions of gaze steps recorded during language com-
prehension and visual cognitive tasks were best fit by
power-law-like distributions (e.g., Montroll and Shlesinger
1982), that is, power-law and lognormal distributions
(Stephen and Mirman 2010; Stephen et al. 2009¢) and that
task differences modulated the extent to which the observed
distributions were closer to power-law or lognormal dis-
tributions (Stephen and Mirman 2010). Stronger task con-
straints led to stronger evidence of components (shift from
power-law to lognormal distributions) and weaker task
constraints led to stronger evidence of interdependence of
cognitive processes (shift from lognormal to power-law
distributions). That is, the extent to which the cognitive
system’s structure stabilized in response to task (or other)
constraints is reflected in the distribution of eye movements.

Differences in gaze fluctuations between typically
developing children and children with autism spectrum
disorder

Taking a similar approach to studying fluctuations in gaze
may be useful in cases of developmental differences in
cognitive function, as between typically-developing (TD)
children and children with an autism spectrum disorder
(ASD). Autism spectrum disorders are neurodevelopmental
disorders along a continuum of severity characterized by
marked deficits in social and communicative functioning as
well as the presence of restricted or repetitive behaviors
(American Psychiatric Association 2000). Children with
ASD exhibit impairments or abnormalities at all levels of
cognitive function: from perception and action to language
and communication, to social interaction. In addition to
exhibiting this wide range of symptoms, accounts of any
one component may be able to account for the full range
of symptoms. For example, a low-level perceptual bias
in favor of local elements over global shape processing
(Behrmann et al. 2006) would predict an impairment of
face processing, which could produce an impairment of
social interaction and related communication deficits. On
the other hand, an impairment of orienting to socially
relevant stimuli (Dawson et al. 1998; Johnson et al. 2005;
Klin et al. 2002) or simply to eye contact (Pelphrey et al.
2002; Senju and Johnson 2009) would also predict
impaired processing of faces.

One hallmark behavior associated with ASD is poorly
modulated gaze to the faces of others (Klin et al. 2002;
Senju and Johnson 2009). Studies using analyses of overt
fixations on pre-defined regions of interest that are assumed
to be important for typical processing of faces (e.g.,
amount of time gazing at the eyes vs. mouth) have found
mixed results when comparing TD and ASD individuals, as
well as variability in development (Chawarska and Shic
2009; Dawson et al. 2005). On this component-dominant
perspective, atypical patterns of face fixation in ASD
reflect atypical social functioning and have consequences
for language processing and communication but would
have no effects on such “low-level” dynamics of eye
movements as the distribution of gaze steps. In contrast, the
interaction-dominant framework predicts that the cognitive
dynamics underlying social and linguistic processing are
intrinsically linked with those producing eye movements,
so differences in one may be reflected in differences in the
other. Because it focuses on system-wide properties, the
current approach may be particularly powerful for exam-
ining systemic differences, such as would be associated
with development in general and in comparisons between
typical and atypical development. Recent studies examin-
ing basic oculomotor functioning in ASD have found
mixed results, with some studies reporting differences
between ASD and TD children and others failing to find
such differences (Johnson et al. 2005; Brenner et al. 2007,
Landry and Bryson 2004). Critically, although these studies
did not take complexity-based approaches to studying
fluctuations, their motivation closely parallels the motiva-
tion for the present study: namely, that oculomotor
dynamics may provide a systemic explanatory model of
autism.

In this report, we examine the changes in heavy-tailed
distributions for gaze steps, and we seek to test whether
these changes predict differences in cognitive performance
for children with ASD. Specifically, we seek to draw a
parallel between, on the one hand, differences in compo-
nential stability in the examples of D. discoideum and
spreading depression discussed above and, on the other
hand, the differences in componential stability in cognitive
performance. Because gaze-step distributions generally
appear to take lognormal and power-law forms, we will
take the relative likelihood of lognormal fit over power-law
fit as a measure of relative stability of components con-
tributing to cognitive performance.

Neurophysiological evidence of spatial distributions
with relatively heavier-tailed behavior in autism

A potentially relevant point of contact between the above

cell-motility research into Euclidean displacements dis-
cussed above and present concerns may be found in
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research on white-matter distributions associated with
autism. Autism is associated with an increased volume of
white-matter regions in the brain (Herbert et al. 2004).
Fahmi et al. (2007) investigated this volume difference in
terms of the spatial dispersion of white matter. They used
image analysis to calculate Euclidean distance maps
expressing the minimal distance of each point in a white-
matter region from the region’s border. The distributions of
distances were strongly tailed for brains belonging to both
typical adults and adults with ASD. Fahmi et al. did not
report on the relative likelihood of any specific tailed dis-
tributions, but they provided evidence of distance maps
with significantly heavier tails for brains belonging to
adults with ASD. This evidence may be consistent with
relatively more power-law (i.e. weaker lognormal) behav-
ior for individuals with ASD and leads us to expect that
ASD will be associated with stronger evidence of power-
law distribution in gaze steps.

Audiovisual speech perception in children with ASD

A number of studies have shown a reduced role of visible
speech information in children and adolescents with ASD
(de Gelder et al. 1991; Irwin et al. 2011; Massaro and
Bosseler 2003; Mongillo et al. 2008; Williams et al. 2004).
Individuals with ASD have been reported to be significantly
poorer at speechreading than TD controls (Magnée et al.
2008; Smith and Bennetto 2007). Moreover, children with
ASD exhibit reduced visual influence for both mismatched
auditory and visual and audiovisual speech in the presence
of auditory noise. For audiovisual speech tasks, children
with ASD are less influenced by the speaker’s face, reporting
auditory-only percepts significantly more often than the TD
controls (Irwin et al. 2011; Mongillo et al. 2008).

In this report, we describe analyses of distributions of gaze
steps that underlie overt fixation behaviors in children with
ASD and typically developing (TD) controls recorded while
the children observed speaking faces. Eye movements in free
viewing are typically considered in terms of fixations and
saccades. However, defining when a fixation (or saccade)
starts and ends is no trivial matter (Karn 2000; Salvucci and
Goldberg 2000), and may specifically be different for typi-
cally-developing children compared to children with autism
spectrum disorders (Shic et al. 2008). Therefore, since
parsing the raw gaze sample data into fixations and saccades
may distort the data, and may do so differentially for TD and
ASD children, we focus on the underlying raw gaze sample
data. Gaze step distribution differences could translate into
differences in fixation and saccade properties, but that would
be a matter of the fixation or saccade analysis algorithm.

In analyses of distributions of gaze steps, the key vari-
ables are (a) what formal distribution provides the best fit
to the observed distribution of eye movements, and (b) the
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relation between individual differences and the relative
goodness of fit of different distributions. An interaction-
dominant view of individual differences predicts that
individuals whose cognitive systems have self-organized
into more stable structures should exhibit distributions that
are closer to lognormal and further from power-law and
individuals whose cognitive systems that have not stabi-
lized should exhibit distributions that are closer to power-
law. We also examine whether eye movement dynamics
have any potential as a diagnostic tool for predicting ASD.

Method
Participants

The participants were 43 typically-developing children and 17
children with autism spectrum disorders (ASD) diagnosed
prior to the study using DSM-IV criteria by a licensed clini-
cian. Two children (both with ASD) had extremely noisy eye-
tracking data (gaze positions appeared to be distributed evenly
over the full range of the eye-tracker’s recording field with
more than 40% of the data points falling outside the screen
boundaries), and were excluded from analyses. All partici-
pants with ASD met or exceeded cutoff scores for autism
spectrum or autism proper on the Autism Diagnostic Obser-
vation Schedule-Generic (ADOS-G; Lord et al. 2000). The
group of 15 children with ASD was composed of 2 children
with Asperger’s Syndrome (1 male), 6 children with autism
proper (all male), and 7 children with Pervasive Develop-
mental Disorder—Not Otherwise Specified (6 male). All
participants completed a language assessment (core language
index (CLI) of the Clinical Evaluation of Language Funda-
mentals (CELF-4), 5-21 years; Semel et al. 2003) and a
general cognitive ability assessment (general conceptual
ability (GCA) of the Differential Ability Scales School Age
Cognitive Battery (DAS); Elliot 1990). Table 1 shows par-
ticipant details, including sex, age, and assessment perfor-
mance information.

Procedure

Visual tracking was assessed at 120 Hz sample frequency
with an ASL Model 504 pan/tilt remote tracking system with
magnetic head tracking. After obtaining parent consent and
child assent and completing eye tracker calibration, partici-
pants completed a series of audio-visual (AV) speech per-
ception tasks in which they heard a syllable and/or saw a
video of a face saying a syllable. The tasks were speech-
reading (identify syllables spoken in silent videos), speech in
noise (identify syllables from noise-added audio paired with
video), auditory-visual mismatch (i.e., McGurk and Mac-
Donald 1976), AV synchrony judgments (determine whether
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Table 1 Participant information

Table 2 Bivariate correlations with lognormality (lognormal/power-
law log ratio)

Males/ Age CELF: DAS: ADOS
total (years) CLI GCA N r
TD children Mean gaze step size 58 —0.492%**
Mean 30/43 9.63 104.16 105.91 - Individual difference measures
SD - 1.76 10.82 13.98 - Age 58 0.319%
Range - 7.04-12.54 82-126 73-147 - CELF:CLI 57 0.312*
ASD children DAS:GCA 58 0.405%*
Mean 13/15 9.70 83.43 87.87 13.70 ASD (1/0) 58 —0.406%**
SD - 2.82 21.41 19.88 3.3 ADOS 10 —0.457
Range - 5.61-15.96 46-114 56-119 10-20 Behavioral performance measures
Audio only 53 0.168
the speaker’s face and voice “talked” at the same time or McGurk 51 —0.055
not), and AV nonspeech discrimination. For a detailed Audio in noise 53 0.256
description of the stimuli, tasks, and behavioral results, see Visual only 53 0.205

Irwin et al. (2011). For the present analyses, the key data
were each participant’s distribution of gaze steps during the
full experimental session. Data from all tasks were combined
because our primary interest was individual differences in
AV speech perception without any strong hypotheses about
differences between specific tasks. Furthermore, these dis-
tributional analyses require large numbers of observations,
so combining the data made those analyses more reliable.

Analysis

Gaze step sizes were computed as the Euclidean distance
between consecutive gaze position samples recorded by the
eye tracker. The frequency distribution of each participant’s
gaze step sizes were fit using exponential, gamma, lognormal,
and power-law distributions (using the Matlab Statistics
toolbox). The ideal distributions mark key points along a
continuum as described above. Other points on this continuum
could be identified by sums of distributions, but we focus on
the parsimonious points defined by standard distributions. In
keeping with the view that these distributions reflect a con-
tinuum rather than categorically distinct states, the critical
measure was goodness of fit for each distribution. Goodness of
fit for each distribution was assessed using log-likelihood and
relative goodness of fit of two distributions was captured by
the difference between log-likelihoods of each fit. Because the
difference of logarithms equals the logarithm of a ratio (i.e.,
log(b) —log(c) = log(blc)), this difference in log-likelihoods
is called the log ratio (Singer and Willett 2003).

Results
Gaze-step distributions and individual differences

Of the 58 participants, 51 participants’ gaze step distribu-
tions were best fit by the lognormal distribution and 7 (3 TD,

* P < 0.05; ¥* P <0.01; *** P < 0.001

4 ASD) were best fit by the power-law distribution. The
formal distributions represent points on a continuum and
because all of the participants were best fit by either log-
normal or power-law distributions (i.e., were between those
two points), we used the lognormal/power-law log ratio to
measure relative goodness of fit between the two distribu-
tions (i.e., their location on the continuum). We will refer to
this metric as “relative lognormality” because larger posi-
tive numbers indicate a more lognormal (and less power law)
distribution and larger negative numbers indicate a more
power law (and less lognormal) distribution. To begin
exploring relationships between individual differences and
eye movement dynamics, we performed simple correlations
between relative lognormality and various measures of
individual differences (Table 2; A full correlation matrix is
provided in the Appendix). Because not all participants were
able to complete all tasks, some measures were not available
for all 58 participants; the N column in Table 2 lists how
many participants completed each task.

None of the behavioral performance measures were
statistically reliably correlated with relative lognormality.
Since the behavioral tasks were designed to be completed
by children with ASD with a range of language and cog-
nitive functioning, they were relatively easy to complete.
So this lack of correlation with relative lognormality may,
in part, reflect a ceiling effect that compressed the range of
behavioral performance. In addition, the relative lognor-
mality measure is meant to capture the degree of stabil-
ization of cognitive structure, but a more stable cognitive
structure is not necessarily one that produces better
behavioral performance. Just as individuals can exhibit
sub-optimal strategies, it is possible that the cognitive
system will sometimes self-organize into a stable structure
that is sub-optimal for performing a given task. The lack of
correlation between relative lognormality and task
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performance suggests that the distribution of gaze steps
captures cognitive and eye movement dynamics that are a
more general property of the individual, not simply a proxy
for correct task performance. Further research is necessary
in order to understand the relationship between self-orga-
nization and task performance on a more trial-by-trial basis
(e.g., Stephen and Anastas 2011).

The strongest effect was a negative correlation between
mean gaze step size and relative lognormality: participants
that tended to make shorter eye movements were better fit
by lognormal distributions. This is not surprising, since a
key aspect of power law-like distributions is their tail.
Furthermore, a greater degree of stabilization of compo-
nential structure predicts both shorter gaze steps and log-
normal (rather than power law) distributions because the
development of stable cognitive strategies is associated
with a weakening of power-law behavior (e.g., Stephen and
Dixon 2009) and participants that have developed stable
fixation strategies would make fewer large eye movements,
thus producing a shorter overall gaze step size.

Measures of development (age), general cognitive ability
(DAS: GCA), and language ability (CELF: CLI) exhibited
strong positive correlations with relative lognormality. The
presence of an autism spectrum diagnosis was strongly
negatively correlated with relative lognormality: compared
to typically-developing children, the distributions of eye
movements of autistic children were better fit by power law
distributions than lognormal distributions. Further, there was
a negative correlation between autism symptom severity
(ADOS-G score) and relative lognormality, supporting the
association between autism and a shift from lognormal to
power law distributions (note that the sample size for this
analysis was quite small, so this numerically large correla-
tion did not reach statistical significance). Because the typ-
ically-developing and ASD groups were not matched in
general cognitive and language ability, it was important to
examine whether these variables were capturing unique
variance in relative lognormality. Hierarchical regression
revealed that after mean step size, age, sex, and general
cognitive and linguistic ability were included, ASD diag-
nosis still accounted for significant variance in relative log-
normality (AR2 = 0.054, P < 0.05). In contrast, after mean
step size, age, and ASD diagnosis were included, general
cognitive and linguistic ability did not capture additional
variance (AR2 =0.028, P >0.25), nor did sex’
(AR? < 0.001, P > 0.9).

The best model was a three-predictor model (summarized
in Table 3), which captured approximately 40% of the var-
jance in relative lognormality (multiple R? = 0. 427,
adjusted R* = 0.395). Each of the three predictors was

* The null effect of sex may be noteworthy because ASD dispropor-
tionately affects boys rather than girls.
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Table 3 Results of lognormality regression

Estimate (SE) t Unique
variance (%)
Mean Gaze Step Size —0.0216 (0.005587) 3.9%¥* 159
Age 1,183 (430.1) 2.8% 8.0
ASD —6,489 (2024) 3.2% 10.9

* P <0.01; ** P <0.001

individually removed from the full model in order to evaluate
the amount of unique variance captured by that variable.
These results indicate that cognitive performance in older
children is better able to self-organize into stable context-
and task-specific structures, thus exhibiting more evidence
of components (distributions that are better fit by the log-
normal and less well fit by the power law). In addition, the
eye movements of ASD children exhibited less stabilized
componential structure compared to the TD children.

Can gaze step distributions predict ASD diagnosis?

As a preliminary test of whether eye movement dynamics
have any potential to function as a diagnostic tool for pre-
dicting individual differences, particularly ASD, we used
logistic regression to evaluate whether relative lognormality
can predict ASD diagnosis. DAS, CELF, sex, and mean step
size were entered into the model. Age was not included
because the groups were matched on age. Mean step size did
not improve model fit (Xz(l) = 0.525,P > 0.4). Thenrelative
lognormality was added, which improved model fit
(/*(1) = 7.618, P < 0.01). That is, the extent to which a
participant’s distribution of gaze step sizes was lognormal vs.
power-law was a statistically significant predictor of whether
that individual was diagnosed with an ASD (beyond what
would be predicted by standard measures of language and
cognitive ability). In light of the strong correlation between
mean step size and relative lognormality, it is noteworthy that,
of these two summary measures, only relative lognormality
improved model fit in this case as well as the previous case: it
was information about tailed behavior rather than information
about simple magnitude that predicted differences. Although
this was a small and heterogeneous sample of children, this
result provides preliminary evidence that suggests eye
movements to measure cognitive dynamics may be an effec-
tive tool for identifying risk for an autism spectrum disorder.

Discussion

Summary and interpretation of results

Many researchers agree that cognition and cognitive devel-
opment should be framed in terms of nested, interactive,
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self-organizing systems, but there are few analytical tools
within psychology for studying these types of systems. Here
we have examined the subtle changes in power-law-like
distributions to evaluate (a) whether eye movement
dynamics in children reflect interaction-dominant process-
ing dynamics and (b) whether this analytical method is
sensitive to developmental and neuropsychological differ-
ences. We found that the distributions of eye movements of
children performing audio-visual speech perception tasks
were best fit by lognormal or power-law distributions, which
are indicative of interaction-dominant cognitive dynamics in
which cognitive structure is self-organized and context-
dependent. These results converge with recent studies that
examined distributions of eye movements in adults per-
forming a variety of visual cognitive and language tasks
(Stephen and Mirman 2010; Stephen et al. 2009c¢), lending
further support to the view of cognition as an interactive,
flexible, self-organizing system rather than a component-
dominant fixed cognitive structure.

To evaluate the sensitivity of this method to individual
differences, the relative goodness of fit of lognormal and
power law distributions was examined across individuals.
Older children and typically developing children tended to
exhibit distributions of eye movements that were closer to
the lognormal distribution and further from the power law
distribution. Power law distributions are indicative of flexi-
ble, scale-invariant systems and lognormal distributions are
indicative of interaction-dominant systems with a greater
degree of stabilization of structure. As discussed in the
introduction, interaction-dominant theories depart from
traditional component-dominant theories in that, under an
interaction-dominant view, evidence of componential cog-
nitive structure in a particular task context is taken to be
evidence of cognitive self-organization and stabilization in
response to that context. Following this logic, the present
data suggest that development contributes to greater stabil-
ization of cognitive structure in response to task context and
that autism spectrum disorders are associated with reduced
stabilization in response to task context. This emphasis on
the ability of the system to stabilize in response to task
context differs strongly from a component-dominant view of
cognitive development that would search for maturation of
particular components, and from a component-dominant
view of neuropsychology that would search for impairment
of a particular component. Such system-level accounts may
be particularly relevant for system-level individual differ-
ences. For example, identifying the “impaired” component
in autism has been very difficult because children with aut-
ism spectrum disorders exhibit impairments or abnormalities
at many levels of cognitive function.

In addition, we found that eye movement distributions
that were closer to power law and further from lognormal
predicted ASD diagnosis beyond what would be predicted

from standard cognitive and linguistic diagnostic tests and
from simple measures of eye movement size. Although this
is certainly a very preliminary analysis, this approach has
tremendous potential impact. Currently, autism is rarely
diagnosed prior to age 3, with the earliest identification at
14 months for about half of children who go on to receive a
diagnosis (Landa et al. 2007). In contrast, it is possible to
track the eye movements of infants as young as 2 months old
(Hunnius and Geuze 2004), with evidence of specific aspects
of cognitive and language processing found in 3-8 month
olds (Johnson et al. 2003, 2004; McMurray and Aslin 2005).
That is, eye tracking is a measure that can be used with very
young infants, is sensitive to cognitive and language pro-
cesses, and reveals dynamics that are related to ASD diag-
nosis. Studies using traditional analyses of gaze behavior
(e.g., proportion of fixations on pre-defined regions of
interest on the face) find earliest differences in preschool
aged children with ASD (Chawarska and Shic 2009; Dawson
et al. 2005). Like other approaches that reveal differences
in gaze behavior in infant siblings of children with ASD
(Elsabbagh et al. 2009), our approach may provide a con-
vergent method for earlier identification of atypical gaze
behaviors associated with this developmental disorder.

Power-law spatial distribution versus power-law
distributed temporal correlations

It is important to address a potential point of confusion that
these results might raise. Namely, a major theme of inter-
action-dominant, complexity-based cognitive science has
been that the power-law temporal correlations (i.e., l/f
noise) is an important signature (or source) of the rich,
multi-scale mix of persistence and flexibility characterizing
typically-developing cognition (Stephen et al. 2010; Ste-
phen and Hajnal 2011; West and Grigolini 2010; Kloos and
Van Orden 2010). That power-law distributions should be
associated with the destabilization of complex function
might seem discordant with the existing wisdom that
power-law temporal correlations are the gold standard for
cognitive performance. Indeed, Lai et al. (2010) found that
hemodynamic response, which is closely tied to neural
activity (Logothetis et al. 2001), showed evidence of sig-
nificantly weaker 1/f noise for adults with ASD when
compared with age- and IQ-matched controls. However, it
is important to emphasize the difference between the
power-law form of an aggregate distribution of fluctuations
(e.g., a histogram of Euclidean displacements) and the
power-law form of the power spectrum (i.e., 1/f noise). The
two kinds of power laws reflect different kinds of mathe-
matical views of the data: the former reflects the proba-
bility of different sized fluctuations (i.e., a time series’ raw
values), and the latter reflects the strength of oscillations at
different time scales (i.e., a time series’ power spectrum).
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Not only may estimation be of temporal correlation
unstable for power-law-like distributions (Scafetta and
Grigolini 2002), as found in gaze steps (Stephen et al.
2009c¢), but power-law distributions and power-law tem-
poral correlations may actually be mutually exclusive sig-
natures of anomalous diffusive processes (e.g., Upadhyaya
et al. 2001). Anomalous diffusion is a driving mechanism
underlying chaotic, self-organizing systems in general
(Shlesinger et al. 1993). The present results need not be in
conflict with previous research (e.g., Lai et al. 2010) but
may simply reflect different ways in which chaotic
dynamics may manifest in a broad range of cognitive
developmental outcomes.

General remarks

The examination of distributions of behavior (specifically,
eye movements) can provide insights into cognitive system
dynamics that capture individual differences in develop-
ment and suggest that this analytical method may be useful
for early diagnosis of developmental disorders. These
results lend further support to an interaction-dominant
framework for cognitive performance in which the cogni-
tive system has no fixed components, but rather self-
organizes in response to task demands, and demonstrate the
utility of this approach for the study of individual
differences.
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