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Abstract This study analyzed distributions of Euclidean

displacements in gaze (i.e. ‘‘gaze steps’’) to evaluate the

degree of componential cognitive constraints on audio-

visual speech perception tasks. Children performing these

tasks exhibited distributions of gaze steps that were closest

to power-law or lognormal distributions, suggesting a

multiplicatively interactive, flexible, self-organizing cog-

nitive system rather than a component-dominant stipulated

cognitive structure. Younger children and children diag-

nosed with an autism spectrum disorder (ASD) exhibited

distributions that were closer to power-law than lognormal,

indicating a reduced degree of self-organized structure. The

relative goodness of lognormal fit was also a significant

predictor of ASD, suggesting that this type of analysis may

point towards a promising diagnostic tool. These results

lend further support to an interaction-dominant framework

that casts cognitive processing and development in terms of

self-organization instead of fixed components and show

that these analytical methods are sensitive to important

developmental and neuropsychological differences.

Keywords Interaction-dominance � Self-organization �
Development � Autism � Eye movements

Introduction

Researchers in developmental psychology have long rec-

ognized the importance of considering development in

terms of nested, interactive systems with non-additive,

synergistic effects (Bronfenbrenner 1977, 1986; Baltes

1987; Lerner 1991). One particularly striking example is

research on gene-environment interaction, which shows

that it is insufficient to consider genetics and environment

as separate entities with independent effects. In order to

provide an adequate account of development, the frame-

work must be based on the interaction between genes and

environment (Bronfenbrenner and Ceci 1994; Gottlieb and

Lickliter 2007). Nevertheless, traditional cognitive science

has sought to understand cognition by breaking it down

into separable components such as attention, working

memory, and concept knowledge. On this view, cognitive

development is conceptualized as the evolution of these

discrete components, with individual differences emerging

due to differences in one or more of these components. In

this report, we motivate and describe an alternative ana-

lytical approach that focuses on the dynamics of emergent

structure in multiplicative interaction-dominant systems.

We then present analyses using this method which show

that it is sensitive to important developmental and neuro-

psychological differences, specifically in the case of autism

spectrum disorder (ASD). Finally, we discuss implications
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and future directions for applying such methods to the

study of development and individual differences.

Complex-systems approaches to cognitive science:

component- and interaction-dominance

The appeal of traditional component-dominant theories has

largely to do with methodological expedience: psycholo-

gists have powerful scientific methods for evaluating such

theories and fewer methods for studying interaction-dom-

inant systems. Of course, the component-dominant

approach has been instructive, especially in pointing to the

inevitable need for cognitive science to grapple with

interaction-driven complexity (Bechtel and Richardson

1993). However, componential explanations have been

limited in scope and stand in stark opposition to the

growing evidence of multiplicative, interaction-driven

phenomena in cognitive science (Ihlen and Vereijken 2010;

Stephen and Dixon 2011; Stephen and Mirman 2010;

Holden et al. 2009). Interactive systems that span different

scales are widely found in many domains of physical sci-

ence, and the cognitive system is proving to be no excep-

tion (Chemero and Silberstein in press). The analytical

tools developed in statistical mechanics and computational

biology have begun to prove useful for the study of psy-

chological processes (Riley et al. 2011; Dixon et al. 2011).

In a similar vein, work in physics and thermodynamics

served as key inspiration for the influential parallel dis-

tributed processing (PDP) approach to cognition (Rumel-

hart et al. 1986; Ackley et al. 1985; Hopfield 1982, 1984;

Farmer 1990) and concepts from the domain of complex

systems have influenced major theories of cognitive

development (Elman et al. 1996; Smith 2005; McClelland

et al. 2010).

Complex-systems theories of cognition and cognitive

development have stimulated the adoption of a new con-

ceptual framework for explaining cognition. Instead of

seeking to identify the components of cognition and how

these components develop, the focus has moved to the

processing dynamics governing cognition and their possi-

ble role in the emergence of new self-organized cognitive

structures. These self-organizing processes can be framed

in terms of stabilization or attractor dynamics (e.g., Spivey

2007): a yet un-organized system is flexible and unstable

and able to adopt a variety of possible organizations or

structures; once it stabilizes into a particular structure, it

becomes more constrained and less flexible. Theoretical

frameworks that focus on emergent structure and self-

organization have figured prominently in cognitive and

developmental science (Elman et al. 1996; Smith 2005;

McClelland et al. 2010) and have been applied to a wide

variety of phenomena from infant perseverative reaching

errors (Thelen et al. 2001) to the emergence of new

problem solving strategies (Stephen and Dixon 2009; Ste-

phen et al. 2009b).

Interaction-dominated, complexity-based cognitive

science

More recently, evidence for the distribution of cognition

across the brain, body, and context has provided new

leverage for a complexity-based approach to cognitive

science. Rather than being locked away in the brain, cog-

nition appears to exhibit rampant sensitivity to effects of

bodily movement, perceptual exploration, and subtle

changes in context (Smith 2005; Chiel and Beer 1997;

Turvey and Fitzpatrick 1993; Barsalou 2008; Lipinski et al.

2009). Further, cognition appears to run on a coordination

of events at various grain sizes across the body. Cognition

has traditionally been understood as unfolding through

bodily processes at various scales, whether through quick

changes like neural firing, slow changes like cortical mat-

uration, or through the anatomical periphery as in manual

coordination (Newell 1990). However, rather than focusing

on neural components, attempts to understand development

of typical and atypical outcomes alike may need to focus

on the high-dimensional connectivities (e.g., Duch and

Dubosz 2011). New evidence of multiplicative interactions

in cognitive performance suggests that these cognitive

processes at different scales of time and space are inter-

dependent (Ihlen and Vereijken 2010). That is, a policy of

reducing the cognitive system to distinctly mental or dis-

tinctly neural components may be ill-advised. Cognition

may depend upon the rich network of multiplicative

interactions that leaves all factors interdependent rather

than independent. In this view, componential additivity

may be the limiting case, and average measures of cogni-

tive performance may be unstable or unreliable (Van Orden

et al. 2003).

The complexity-based approach to cognition as funda-

mentally interaction-dominant depends on closer attention to

the distributions of fluctuations throughout the cognitive

system, not only in the brain but also throughout the body and

the context (Stephen et al. 2009a; Kiefer et al. 2009; Granic

and Hollenstein 2003; Granic and Patterson 2006). That is,

whereas cognitive science has typically proceeded by com-

paring mean values on the assumption of additive, white

Gaussian fluctuations in cognitive performance, cognitive

scientists have become newly concerned with the fact that

fluctuations in cognitive performance often depart strongly

from additive white Gaussian distributions (Holden et al.

2009; Van Orden et al. 2003; Kello et al. 2008, 2010).

Whereas average measures are best for approximating

additive (i.e., component dominant) behavior, the distribu-

tion at large can often be more informative (e.g., Mayr 1959).

Interestingly, changes in the distribution of these fluctuations
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appear to predict important differences in cognitive perfor-

mance (Stephen et al. 2009b, 2010; Stephen and Hajnal

2011). The predictive relationship between fluctuations

distributed across the brain-body-context system and cog-

nitive performance suggests that cognition may not depend

on irreducible, distinctly mental or neural primitives, but

may instead result from non-decomposable interactions

across spatial and temporal scales.

Appearance or disappearance of power-law behavior

as a signature of structural change

One strategy of the interaction-dominant stream of cognitive

research involves testing a continuum of distributions

ranging from normal distributions, reflecting pure compo-

nential structure, to power-law distributions, reflecting pure

interactions and the complete absence of componential

structure (Stephen and Mirman 2010; Holden et al. 2009). To

understand this continuum, consider random numbers (e.g.,

a, b, c,…), drawn from independent uniform distributions. If

very many random numbers are drawn independently and

summed together (e.g., a ? b), then the resulting distribu-

tion will be normal. Thus, normal distributions reflect com-

ponential structure: they arise from adding the effects of

independent variables, a case in which the role of each par-

ticipating number is always the same. Exponential and

gamma distributions reflect slight multiplicative distortion

of the additive normal distribution; that is, a system with

weakly interacting components1 (Arellano-Valle et al. 2006;

Kendal 2001). If random numbers are, instead, repeatedly

drawn from uniform distributions and multiplied (e.g.,

a*b*c*…), then a lognormal distribution will be produced.

Lognormal distributions reflect structured interaction-dom-

inant systems because, although the variables are indepen-

dent, their effects depend on the value of the other variables

involved (Holden et al. 2009; Farmer 1990). If the combi-

natorial process is exponentiation (e.g., ab), then a power-law

distribution will arise. This process also relies on multipli-

cation, but now the elements that are multiplied are not

independent: small values are multiplied by small values and

large values are multiplied by large values (Montroll and

Shlesinger 1982). The interdependence inherent in power

law behavior requires that system behavior is interdependent

across multiple levels or scales—a system that has no fun-

damental, characteristic scale2 [for a more detailed discus-

sions see Holden et al. (2009); Kello et al. (2010)]. These

distributions vary in their tailed behavior, with power laws

and lognormal distributions bearing relatively heavy tail,

i.e., slow decay of proportions for very large values, with

heavier tails for power laws than for lognormal distributions

(Speranza and Sollich 2003; Mitzenmacher 2004; Eeckhout

2009; Gong et al. 2005; Krishna et al. 2005).

This spectrum can be construed as reflecting the

diminishing plausibility of componential decomposability,

ranging from purely additive dynamics to multiplicatively

interdependent dynamics. Traditional component-dominant

cognitive theories propose essentially constant components

(perhaps with some modulation by learning). If cognitive

1 This weak multiplicative distortion may be expressed in a couple of

ways depending on how the distributions are instantiated. Exponential

distributions can be generated by the sum of the squares of multiple

independent normally distributed variables (i.e., the sum of indepen-

dent components interacting with themselves, that is, accentuating

their own contributions). Gamma distributions are generated by the

sum of relatively few exponential distributions; exponential distribu-

tions are themselves specific cases of gamma distributions. Gamma

distributions may also be generated by dividing the basic exponential

distribution function by the gamma function, a continuous general-

ization of the factorial function (i.e., x!), itself a multiplicative

transformation. As the number of added exponentials increases

towards large limits (i.e., towards the limit of ‘‘very many random

numbers’’ as noted in the main text), the gamma distribution

converges towards the normal distribution. Alternatively, exponential

distributions may be considered as the negative logarithm of uniform

distributions in the range (0, 1). In this light, the sum of relatively few

exponentials composing the gamma distribution is a logarithm of the

product of relatively few uniformly distributed random variables.

Because logarithm of repeated multiplication reduces to repeated

addition of logarithms, the convergence of gamma distributions to

normal distributions holds just the same. Although the values being

added affect some aspects of the distribution, in the limit of very large

sets of random variables or repeated additions, the distribution will

converge to a normal distribution. Thus, in either the gamma or

exponential case, no matter how multiplicativity appears in the

generation of the distributions, it is quashed by repeated addition of

very many random variables (whether those variables are exponential

Footnote 1 continued

or squared normal). That is, skewed distributions following expo-

nential or gamma form will collapse back towards normal distribu-

tions and thus reflect much stronger additive than multiplicative

relationships among random variables. For this reason, we do not

distinguish whether gamma or exponential distributions reflect greater

or lesser multiplicativity: gamma distributions may be more multi-

plicative in general than in the limiting case of the exponential dis-

tribution if only because they involve dividing probabilities by values

of the gamma function different from 1 (i.e., different from the

multiplicative identity), but their convergence to normal distributions

suggests that this multiplicativity is ultimately negligible in the largest

limits.
2 Lack of a characteristic scale refers statistically to the potential

divergence of the second moment (i.e., variance). Practically, this

point speaks to how confidently we can consider the observed sample

to be representative of the yet unmeasured, unobserved behavior.

Power-law distributions may not have a finite standard deviation, thus

the observed bounds in a particular data set may provide no guarantee

that the power-law distributed system will remain within those

bounds. The summed behavior of a hierarchy of independent

components at different scales may adequately approximate a

particular observed power-law-distributed data set, but this system

would be committed to the finite bounds of the proposed components.

Thus, a multiplicative interdependent system (power-law distribution)

and a hierarchy of additive components (multiple additive normal

distributions) entail different predictions regarding future observed

behavior, both at the lower and upper extremes of the distribution.
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organization is less fixed and more softly-assembled,

components may form and dissolve and re-assemble into

different structures. The degree of organization/re-organi-

zation available to the system represents a continuum of

componentiality, which is inversely related to multiplic-

ativity and interdependence of the distribution of system

behavior. Although both lognormal and power-law distri-

butions are multiplicative, power-law distributions reflect

multiplication of interdependent components whereas log-

normal distributions reflect multiplication of independent

components. Interdependence of components presents a

further challenge for empirical decomposability of com-

ponents (beyond multiplicativity), so power-law distribu-

tions are considered as reflecting a system that is less

componential (though not more multiplicative) than log-

normal distributions. Cognitive structure may be so fluent

and regular as to invite the observation of compositionality

and componentiality. The key difference between compo-

nent-dominant and interaction-dominant views is whether

this observed componentiality reflects the permanent state

of the system (component-dominant) or the emergent result

of a subtle confluence of constraints both from the task and

from the prior history and development of the cognitive

system (Holden et al. 2011; Van Orden et al. 2010).

Cognitive scientists have become interested in what

insights the distributions of cognitive performance might

provide into the structure of the cognitive system. Because

distributions of system behavior may reflect the degree of

componential structure, analysis of these distributions

provides a measure of system stabilization. That is, because

lognormal distributions arise naturally from multiplicative

transformations of independent random variables and

power law distributions arise from multiplicative transfor-

mations of non-independent random variables, lognormal

distributions reflect interactivity between processes under

more additive constraints than power law distributions. For

example, a shift from power-law behavior to lognormal

behavior would reflect the emergence of relatively stable,

functionally independent components and a shift towards

power-law behavior would reflect the breakdown of those

components and loosening of functional constraints.

Precisely this type of pattern has been found in velocity

profiles (i.e., aggregate distributions of Euclidean dis-

placements) of cell motility. In one example, Takagi et al.

(2008) discovered developmental changes in velocity dis-

tributions for Dictyostelium discoideum (or more familiarly,

‘‘slime mold’’), which are characterized by generations

of ‘‘feast and famine’’ life cycles. During the ‘‘feast’’

phase, D. discoideum is unicellular with no differentiable

components; during the ‘‘famine’’ phase, D. discoideum

becomes a multicellular aggregate with distinct anatomical

structures dedicated to specific functions (e.g., locomotion

or navigation). That is, D. discoideum exhibits a transition

to more componential structure once it begins to starve

(Chisholm and Firtel 2004). Interestingly, Takagi et al.

found that velocity distributions exhibited power-law

structure during the unicellular phase of D. discoideum, and

assumed a more additive distribution, namely the expo-

nential, during the multicellular phase.

Whereas the example of D. discoideum suggests a

relationship between disappearance of power-law distri-

butions and the emergence of componential structure, a

second example dealing with the migration of microglia

through hippocampal tissue following spreading depres-

sion, a neurological perturbation, suggests a relationship

between the appearance of power law distributions and the

disorganization of componential structure (Grinberg et al.

2011). Spreading depression manifests as a temporary (i.e.,

minutes in duration) but abrupt cessation of neural activity

in the brain, beginning in one region and propagating

outwards in all directions. Sometimes a symptom of head

injury, it can contribute to migraines, cerebrovascular dis-

orders, and amnesia (Gorji 2001). Spreading depression

can have severe impact on neurological and cognitive

components by compromising the structural integrity of the

blood–brain barrier (Gursoy-Ozdemir et al. 2004) and the

consolidation of memory (Albert 1966; Bures et al. 1974;

LaMendola and Bever 1997). One of the effects of

spreading depression is to stimulate the migration of

microglia in hippocampal tissue, exhibiting velocity dis-

tributions with power-law form (Grinberg et al. 2011).

Indeed, though microglial migration has been identified as

a reparatory response to injury (Lee et al. 2008), microglia

can have pathogenic effects on neuronal function (Streit

2000; Carbonell et al. 2005). Grinberg et al. suggested that

this power-law distributed microglial migration serves to

heighten susceptibility to later spreading depression over a

wider range of brain tissue. Thus, power-law distributed

migration of microglia may reflect—and possibly later

promote—perturbations to componential structure under-

pinning neurological and cognitive function.

These examples suggest a foundation for interpreting the

presence or absence of power-law distributed fluctuations

in cognitive performance. Namely, complexity science

indicates that the emergence of power-law distributions

reflects a ‘‘critical’’ state of loosened constraints in which

complex systems are sufficiently disorganized to be poised

for a variety of possible new configurations. In this poised

state of criticality, dynamics follow similar, generic (i.e.,

‘‘universal’’) laws, regardless of substance (Solé et al.

1999; Stanley et al. 2001; Schertzer and Lovejoy 2004;

Papanikolaou et al. 2011). Evidence of power-law fluctu-

ations in cognitive performance has been a crucial moti-

vation for entertaining the possibility that cognition might

follow the same generic principles as other physical sys-

tems. The current report deals not with cell motility but
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with fluctuations in human gaze during visual cognitive

tasks, and it presents data suggesting that the departure

from pure power-law distribution may indicate the strength

of componential constraints on cognitive function.

Fluctuations in gaze exhibit power-law-like

distributions

Recent studies of eye movements have found that the

distributions of gaze steps recorded during language com-

prehension and visual cognitive tasks were best fit by

power-law-like distributions (e.g., Montroll and Shlesinger

1982), that is, power-law and lognormal distributions

(Stephen and Mirman 2010; Stephen et al. 2009c) and that

task differences modulated the extent to which the observed

distributions were closer to power-law or lognormal dis-

tributions (Stephen and Mirman 2010). Stronger task con-

straints led to stronger evidence of components (shift from

power-law to lognormal distributions) and weaker task

constraints led to stronger evidence of interdependence of

cognitive processes (shift from lognormal to power-law

distributions). That is, the extent to which the cognitive

system’s structure stabilized in response to task (or other)

constraints is reflected in the distribution of eye movements.

Differences in gaze fluctuations between typically

developing children and children with autism spectrum

disorder

Taking a similar approach to studying fluctuations in gaze

may be useful in cases of developmental differences in

cognitive function, as between typically-developing (TD)

children and children with an autism spectrum disorder

(ASD). Autism spectrum disorders are neurodevelopmental

disorders along a continuum of severity characterized by

marked deficits in social and communicative functioning as

well as the presence of restricted or repetitive behaviors

(American Psychiatric Association 2000). Children with

ASD exhibit impairments or abnormalities at all levels of

cognitive function: from perception and action to language

and communication, to social interaction. In addition to

exhibiting this wide range of symptoms, accounts of any

one component may be able to account for the full range

of symptoms. For example, a low-level perceptual bias

in favor of local elements over global shape processing

(Behrmann et al. 2006) would predict an impairment of

face processing, which could produce an impairment of

social interaction and related communication deficits. On

the other hand, an impairment of orienting to socially

relevant stimuli (Dawson et al. 1998; Johnson et al. 2005;

Klin et al. 2002) or simply to eye contact (Pelphrey et al.

2002; Senju and Johnson 2009) would also predict

impaired processing of faces.

One hallmark behavior associated with ASD is poorly

modulated gaze to the faces of others (Klin et al. 2002;

Senju and Johnson 2009). Studies using analyses of overt

fixations on pre-defined regions of interest that are assumed

to be important for typical processing of faces (e.g.,

amount of time gazing at the eyes vs. mouth) have found

mixed results when comparing TD and ASD individuals, as

well as variability in development (Chawarska and Shic

2009; Dawson et al. 2005). On this component-dominant

perspective, atypical patterns of face fixation in ASD

reflect atypical social functioning and have consequences

for language processing and communication but would

have no effects on such ‘‘low-level’’ dynamics of eye

movements as the distribution of gaze steps. In contrast, the

interaction-dominant framework predicts that the cognitive

dynamics underlying social and linguistic processing are

intrinsically linked with those producing eye movements,

so differences in one may be reflected in differences in the

other. Because it focuses on system-wide properties, the

current approach may be particularly powerful for exam-

ining systemic differences, such as would be associated

with development in general and in comparisons between

typical and atypical development. Recent studies examin-

ing basic oculomotor functioning in ASD have found

mixed results, with some studies reporting differences

between ASD and TD children and others failing to find

such differences (Johnson et al. 2005; Brenner et al. 2007;

Landry and Bryson 2004). Critically, although these studies

did not take complexity-based approaches to studying

fluctuations, their motivation closely parallels the motiva-

tion for the present study: namely, that oculomotor

dynamics may provide a systemic explanatory model of

autism.

In this report, we examine the changes in heavy-tailed

distributions for gaze steps, and we seek to test whether

these changes predict differences in cognitive performance

for children with ASD. Specifically, we seek to draw a

parallel between, on the one hand, differences in compo-

nential stability in the examples of D. discoideum and

spreading depression discussed above and, on the other

hand, the differences in componential stability in cognitive

performance. Because gaze-step distributions generally

appear to take lognormal and power-law forms, we will

take the relative likelihood of lognormal fit over power-law

fit as a measure of relative stability of components con-

tributing to cognitive performance.

Neurophysiological evidence of spatial distributions

with relatively heavier-tailed behavior in autism

A potentially relevant point of contact between the above

cell-motility research into Euclidean displacements dis-

cussed above and present concerns may be found in
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research on white-matter distributions associated with

autism. Autism is associated with an increased volume of

white-matter regions in the brain (Herbert et al. 2004).

Fahmi et al. (2007) investigated this volume difference in

terms of the spatial dispersion of white matter. They used

image analysis to calculate Euclidean distance maps

expressing the minimal distance of each point in a white-

matter region from the region’s border. The distributions of

distances were strongly tailed for brains belonging to both

typical adults and adults with ASD. Fahmi et al. did not

report on the relative likelihood of any specific tailed dis-

tributions, but they provided evidence of distance maps

with significantly heavier tails for brains belonging to

adults with ASD. This evidence may be consistent with

relatively more power-law (i.e. weaker lognormal) behav-

ior for individuals with ASD and leads us to expect that

ASD will be associated with stronger evidence of power-

law distribution in gaze steps.

Audiovisual speech perception in children with ASD

A number of studies have shown a reduced role of visible

speech information in children and adolescents with ASD

(de Gelder et al. 1991; Irwin et al. 2011; Massaro and

Bosseler 2003; Mongillo et al. 2008; Williams et al. 2004).

Individuals with ASD have been reported to be significantly

poorer at speechreading than TD controls (Magnée et al.

2008; Smith and Bennetto 2007). Moreover, children with

ASD exhibit reduced visual influence for both mismatched

auditory and visual and audiovisual speech in the presence

of auditory noise. For audiovisual speech tasks, children

with ASD are less influenced by the speaker’s face, reporting

auditory-only percepts significantly more often than the TD

controls (Irwin et al. 2011; Mongillo et al. 2008).

In this report, we describe analyses of distributions of gaze

steps that underlie overt fixation behaviors in children with

ASD and typically developing (TD) controls recorded while

the children observed speaking faces. Eye movements in free

viewing are typically considered in terms of fixations and

saccades. However, defining when a fixation (or saccade)

starts and ends is no trivial matter (Karn 2000; Salvucci and

Goldberg 2000), and may specifically be different for typi-

cally-developing children compared to children with autism

spectrum disorders (Shic et al. 2008). Therefore, since

parsing the raw gaze sample data into fixations and saccades

may distort the data, and may do so differentially for TD and

ASD children, we focus on the underlying raw gaze sample

data. Gaze step distribution differences could translate into

differences in fixation and saccade properties, but that would

be a matter of the fixation or saccade analysis algorithm.

In analyses of distributions of gaze steps, the key vari-

ables are (a) what formal distribution provides the best fit

to the observed distribution of eye movements, and (b) the

relation between individual differences and the relative

goodness of fit of different distributions. An interaction-

dominant view of individual differences predicts that

individuals whose cognitive systems have self-organized

into more stable structures should exhibit distributions that

are closer to lognormal and further from power-law and

individuals whose cognitive systems that have not stabi-

lized should exhibit distributions that are closer to power-

law. We also examine whether eye movement dynamics

have any potential as a diagnostic tool for predicting ASD.

Method

Participants

The participants were 43 typically-developing children and 17

children with autism spectrum disorders (ASD) diagnosed

prior to the study using DSM-IV criteria by a licensed clini-

cian. Two children (both with ASD) had extremely noisy eye-

tracking data (gaze positions appeared to be distributed evenly

over the full range of the eye-tracker’s recording field with

more than 40% of the data points falling outside the screen

boundaries), and were excluded from analyses. All partici-

pants with ASD met or exceeded cutoff scores for autism

spectrum or autism proper on the Autism Diagnostic Obser-

vation Schedule-Generic (ADOS-G; Lord et al. 2000). The

group of 15 children with ASD was composed of 2 children

with Asperger’s Syndrome (1 male), 6 children with autism

proper (all male), and 7 children with Pervasive Develop-

mental Disorder—Not Otherwise Specified (6 male). All

participants completed a language assessment (core language

index (CLI) of the Clinical Evaluation of Language Funda-

mentals (CELF-4), 5–21 years; Semel et al. 2003) and a

general cognitive ability assessment (general conceptual

ability (GCA) of the Differential Ability Scales School Age

Cognitive Battery (DAS); Elliot 1990). Table 1 shows par-

ticipant details, including sex, age, and assessment perfor-

mance information.

Procedure

Visual tracking was assessed at 120 Hz sample frequency

with an ASL Model 504 pan/tilt remote tracking system with

magnetic head tracking. After obtaining parent consent and

child assent and completing eye tracker calibration, partici-

pants completed a series of audio-visual (AV) speech per-

ception tasks in which they heard a syllable and/or saw a

video of a face saying a syllable. The tasks were speech-

reading (identify syllables spoken in silent videos), speech in

noise (identify syllables from noise-added audio paired with

video), auditory-visual mismatch (i.e., McGurk and Mac-

Donald 1976), AV synchrony judgments (determine whether
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the speaker’s face and voice ‘‘talked’’ at the same time or

not), and AV nonspeech discrimination. For a detailed

description of the stimuli, tasks, and behavioral results, see

Irwin et al. (2011). For the present analyses, the key data

were each participant’s distribution of gaze steps during the

full experimental session. Data from all tasks were combined

because our primary interest was individual differences in

AV speech perception without any strong hypotheses about

differences between specific tasks. Furthermore, these dis-

tributional analyses require large numbers of observations,

so combining the data made those analyses more reliable.

Analysis

Gaze step sizes were computed as the Euclidean distance

between consecutive gaze position samples recorded by the

eye tracker. The frequency distribution of each participant’s

gaze step sizes were fit using exponential, gamma, lognormal,

and power-law distributions (using the Matlab Statistics

toolbox). The ideal distributions mark key points along a

continuum as described above. Other points on this continuum

could be identified by sums of distributions, but we focus on

the parsimonious points defined by standard distributions. In

keeping with the view that these distributions reflect a con-

tinuum rather than categorically distinct states, the critical

measure was goodness of fit for each distribution. Goodness of

fit for each distribution was assessed using log-likelihood and

relative goodness of fit of two distributions was captured by

the difference between log-likelihoods of each fit. Because the

difference of logarithms equals the logarithm of a ratio (i.e.,

log(b) – log(c) = log(b/c)), this difference in log-likelihoods

is called the log ratio (Singer and Willett 2003).

Results

Gaze-step distributions and individual differences

Of the 58 participants, 51 participants’ gaze step distribu-

tions were best fit by the lognormal distribution and 7 (3 TD,

4 ASD) were best fit by the power-law distribution. The

formal distributions represent points on a continuum and

because all of the participants were best fit by either log-

normal or power-law distributions (i.e., were between those

two points), we used the lognormal/power-law log ratio to

measure relative goodness of fit between the two distribu-

tions (i.e., their location on the continuum). We will refer to

this metric as ‘‘relative lognormality’’ because larger posi-

tive numbers indicate a more lognormal (and less power law)

distribution and larger negative numbers indicate a more

power law (and less lognormal) distribution. To begin

exploring relationships between individual differences and

eye movement dynamics, we performed simple correlations

between relative lognormality and various measures of

individual differences (Table 2; A full correlation matrix is

provided in the Appendix). Because not all participants were

able to complete all tasks, some measures were not available

for all 58 participants; the N column in Table 2 lists how

many participants completed each task.

None of the behavioral performance measures were

statistically reliably correlated with relative lognormality.

Since the behavioral tasks were designed to be completed

by children with ASD with a range of language and cog-

nitive functioning, they were relatively easy to complete.

So this lack of correlation with relative lognormality may,

in part, reflect a ceiling effect that compressed the range of

behavioral performance. In addition, the relative lognor-

mality measure is meant to capture the degree of stabil-

ization of cognitive structure, but a more stable cognitive

structure is not necessarily one that produces better

behavioral performance. Just as individuals can exhibit

sub-optimal strategies, it is possible that the cognitive

system will sometimes self-organize into a stable structure

that is sub-optimal for performing a given task. The lack of

correlation between relative lognormality and task

Table 1 Participant information

Males/

total

Age

(years)

CELF:

CLI

DAS:

GCA

ADOS

TD children

Mean 30/43 9.63 104.16 105.91 –

SD – 1.76 10.82 13.98 –

Range – 7.04–12.54 82–126 73–147 –

ASD children

Mean 13/15 9.70 83.43 87.87 13.70

SD – 2.82 21.41 19.88 3.3

Range – 5.61–15.96 46–114 56–119 10–20

Table 2 Bivariate correlations with lognormality (lognormal/power-

law log ratio)

N r

Mean gaze step size 58 -0.492***

Individual difference measures

Age 58 0.319*

CELF:CLI 57 0.312*

DAS:GCA 58 0.405**

ASD (1/0) 58 -0.406**

ADOS 10 -0.457

Behavioral performance measures

Audio only 53 0.168

McGurk 51 -0.055

Audio in noise 53 0.256

Visual only 53 0.205

* P \ 0.05; ** P \ 0.01; *** P \ 0.001
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performance suggests that the distribution of gaze steps

captures cognitive and eye movement dynamics that are a

more general property of the individual, not simply a proxy

for correct task performance. Further research is necessary

in order to understand the relationship between self-orga-

nization and task performance on a more trial-by-trial basis

(e.g., Stephen and Anastas 2011).

The strongest effect was a negative correlation between

mean gaze step size and relative lognormality: participants

that tended to make shorter eye movements were better fit

by lognormal distributions. This is not surprising, since a

key aspect of power law-like distributions is their tail.

Furthermore, a greater degree of stabilization of compo-

nential structure predicts both shorter gaze steps and log-

normal (rather than power law) distributions because the

development of stable cognitive strategies is associated

with a weakening of power-law behavior (e.g., Stephen and

Dixon 2009) and participants that have developed stable

fixation strategies would make fewer large eye movements,

thus producing a shorter overall gaze step size.

Measures of development (age), general cognitive ability

(DAS: GCA), and language ability (CELF: CLI) exhibited

strong positive correlations with relative lognormality. The

presence of an autism spectrum diagnosis was strongly

negatively correlated with relative lognormality: compared

to typically-developing children, the distributions of eye

movements of autistic children were better fit by power law

distributions than lognormal distributions. Further, there was

a negative correlation between autism symptom severity

(ADOS-G score) and relative lognormality, supporting the

association between autism and a shift from lognormal to

power law distributions (note that the sample size for this

analysis was quite small, so this numerically large correla-

tion did not reach statistical significance). Because the typ-

ically-developing and ASD groups were not matched in

general cognitive and language ability, it was important to

examine whether these variables were capturing unique

variance in relative lognormality. Hierarchical regression

revealed that after mean step size, age, sex, and general

cognitive and linguistic ability were included, ASD diag-

nosis still accounted for significant variance in relative log-

normality (DR2 = 0.054, P \ 0.05). In contrast, after mean

step size, age, and ASD diagnosis were included, general

cognitive and linguistic ability did not capture additional

variance (DR2 = 0.028, P [ 0.25), nor did sex3

(DR2 \ 0.001, P [ 0.9).

The best model was a three-predictor model (summarized

in Table 3), which captured approximately 40% of the var-

iance in relative lognormality (multiple R2 = 0. 427,

adjusted R2 = 0.395). Each of the three predictors was

individually removed from the full model in order to evaluate

the amount of unique variance captured by that variable.

These results indicate that cognitive performance in older

children is better able to self-organize into stable context-

and task-specific structures, thus exhibiting more evidence

of components (distributions that are better fit by the log-

normal and less well fit by the power law). In addition, the

eye movements of ASD children exhibited less stabilized

componential structure compared to the TD children.

Can gaze step distributions predict ASD diagnosis?

As a preliminary test of whether eye movement dynamics

have any potential to function as a diagnostic tool for pre-

dicting individual differences, particularly ASD, we used

logistic regression to evaluate whether relative lognormality

can predict ASD diagnosis. DAS, CELF, sex, and mean step

size were entered into the model. Age was not included

because the groups were matched on age. Mean step size did

not improve model fit (v2(1) = 0.525, P [ 0.4). Then relative

lognormality was added, which improved model fit

(v2(1) = 7.618, P \ 0.01). That is, the extent to which a

participant’s distribution of gaze step sizes was lognormal vs.

power-law was a statistically significant predictor of whether

that individual was diagnosed with an ASD (beyond what

would be predicted by standard measures of language and

cognitive ability). In light of the strong correlation between

mean step size and relative lognormality, it is noteworthy that,

of these two summary measures, only relative lognormality

improved model fit in this case as well as the previous case: it

was information about tailed behavior rather than information

about simple magnitude that predicted differences. Although

this was a small and heterogeneous sample of children, this

result provides preliminary evidence that suggests eye

movements to measure cognitive dynamics may be an effec-

tive tool for identifying risk for an autism spectrum disorder.

Discussion

Summary and interpretation of results

Many researchers agree that cognition and cognitive devel-

opment should be framed in terms of nested, interactive,

Table 3 Results of lognormality regression

Estimate (SE) t Unique

variance (%)

Mean Gaze Step Size -0.0216 (0.005587) 3.9** 15.9

Age 1,183 (430.1) 2.8* 8.0

ASD -6,489 (2024) 3.2* 10.9

* P \ 0.01; ** P \ 0.001

3 The null effect of sex may be noteworthy because ASD dispropor-

tionately affects boys rather than girls.
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self-organizing systems, but there are few analytical tools

within psychology for studying these types of systems. Here

we have examined the subtle changes in power-law-like

distributions to evaluate (a) whether eye movement

dynamics in children reflect interaction-dominant process-

ing dynamics and (b) whether this analytical method is

sensitive to developmental and neuropsychological differ-

ences. We found that the distributions of eye movements of

children performing audio-visual speech perception tasks

were best fit by lognormal or power-law distributions, which

are indicative of interaction-dominant cognitive dynamics in

which cognitive structure is self-organized and context-

dependent. These results converge with recent studies that

examined distributions of eye movements in adults per-

forming a variety of visual cognitive and language tasks

(Stephen and Mirman 2010; Stephen et al. 2009c), lending

further support to the view of cognition as an interactive,

flexible, self-organizing system rather than a component-

dominant fixed cognitive structure.

To evaluate the sensitivity of this method to individual

differences, the relative goodness of fit of lognormal and

power law distributions was examined across individuals.

Older children and typically developing children tended to

exhibit distributions of eye movements that were closer to

the lognormal distribution and further from the power law

distribution. Power law distributions are indicative of flexi-

ble, scale-invariant systems and lognormal distributions are

indicative of interaction-dominant systems with a greater

degree of stabilization of structure. As discussed in the

introduction, interaction-dominant theories depart from

traditional component-dominant theories in that, under an

interaction-dominant view, evidence of componential cog-

nitive structure in a particular task context is taken to be

evidence of cognitive self-organization and stabilization in

response to that context. Following this logic, the present

data suggest that development contributes to greater stabil-

ization of cognitive structure in response to task context and

that autism spectrum disorders are associated with reduced

stabilization in response to task context. This emphasis on

the ability of the system to stabilize in response to task

context differs strongly from a component-dominant view of

cognitive development that would search for maturation of

particular components, and from a component-dominant

view of neuropsychology that would search for impairment

of a particular component. Such system-level accounts may

be particularly relevant for system-level individual differ-

ences. For example, identifying the ‘‘impaired’’ component

in autism has been very difficult because children with aut-

ism spectrum disorders exhibit impairments or abnormalities

at many levels of cognitive function.

In addition, we found that eye movement distributions

that were closer to power law and further from lognormal

predicted ASD diagnosis beyond what would be predicted

from standard cognitive and linguistic diagnostic tests and

from simple measures of eye movement size. Although this

is certainly a very preliminary analysis, this approach has

tremendous potential impact. Currently, autism is rarely

diagnosed prior to age 3, with the earliest identification at

14 months for about half of children who go on to receive a

diagnosis (Landa et al. 2007). In contrast, it is possible to

track the eye movements of infants as young as 2 months old

(Hunnius and Geuze 2004), with evidence of specific aspects

of cognitive and language processing found in 3–8 month

olds (Johnson et al. 2003, 2004; McMurray and Aslin 2005).

That is, eye tracking is a measure that can be used with very

young infants, is sensitive to cognitive and language pro-

cesses, and reveals dynamics that are related to ASD diag-

nosis. Studies using traditional analyses of gaze behavior

(e.g., proportion of fixations on pre-defined regions of

interest on the face) find earliest differences in preschool

aged children with ASD (Chawarska and Shic 2009; Dawson

et al. 2005). Like other approaches that reveal differences

in gaze behavior in infant siblings of children with ASD

(Elsabbagh et al. 2009), our approach may provide a con-

vergent method for earlier identification of atypical gaze

behaviors associated with this developmental disorder.

Power-law spatial distribution versus power-law

distributed temporal correlations

It is important to address a potential point of confusion that

these results might raise. Namely, a major theme of inter-

action-dominant, complexity-based cognitive science has

been that the power-law temporal correlations (i.e., 1/f

noise) is an important signature (or source) of the rich,

multi-scale mix of persistence and flexibility characterizing

typically-developing cognition (Stephen et al. 2010; Ste-

phen and Hajnal 2011; West and Grigolini 2010; Kloos and

Van Orden 2010). That power-law distributions should be

associated with the destabilization of complex function

might seem discordant with the existing wisdom that

power-law temporal correlations are the gold standard for

cognitive performance. Indeed, Lai et al. (2010) found that

hemodynamic response, which is closely tied to neural

activity (Logothetis et al. 2001), showed evidence of sig-

nificantly weaker 1/f noise for adults with ASD when

compared with age- and IQ-matched controls. However, it

is important to emphasize the difference between the

power-law form of an aggregate distribution of fluctuations

(e.g., a histogram of Euclidean displacements) and the

power-law form of the power spectrum (i.e., 1/f noise). The

two kinds of power laws reflect different kinds of mathe-

matical views of the data: the former reflects the proba-

bility of different sized fluctuations (i.e., a time series’ raw

values), and the latter reflects the strength of oscillations at

different time scales (i.e., a time series’ power spectrum).
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Not only may estimation be of temporal correlation

unstable for power-law-like distributions (Scafetta and

Grigolini 2002), as found in gaze steps (Stephen et al.

2009c), but power-law distributions and power-law tem-

poral correlations may actually be mutually exclusive sig-

natures of anomalous diffusive processes (e.g., Upadhyaya

et al. 2001). Anomalous diffusion is a driving mechanism

underlying chaotic, self-organizing systems in general

(Shlesinger et al. 1993). The present results need not be in

conflict with previous research (e.g., Lai et al. 2010) but

may simply reflect different ways in which chaotic

dynamics may manifest in a broad range of cognitive

developmental outcomes.

General remarks

The examination of distributions of behavior (specifically,

eye movements) can provide insights into cognitive system

dynamics that capture individual differences in develop-

ment and suggest that this analytical method may be useful

for early diagnosis of developmental disorders. These

results lend further support to an interaction-dominant

framework for cognitive performance in which the cogni-

tive system has no fixed components, but rather self-

organizes in response to task demands, and demonstrate the

utility of this approach for the study of individual

differences.
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