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Abstract

Time course estimates from eye tracking during spoken language processing (the ‘‘visual world paradigm’’, or VWP)
have enabled progress on debates regarding fine-grained details of activation and competition over time. There are,
however, three gaps in current analyses of VWP data: consideration of time in a statistically rigorous manner, quan-
tification of individual differences, and distinguishing linguistic effects from non-linguistic effects. To address these gaps,
we have developed an approach combining statistical and computational modeling. The statistical approach (growth
curve analysis, a technique explicitly designed to assess change over time at group and individual levels) provides a rig-
orous means of analyzing time course data. We introduce the method and its application to VWP data. We also dem-
onstrate the potential for assessing whether differences in group or individual data are best explained by linguistic
processing or decisional aspects of VWP tasks through comparison of growth curve analyses and computational mod-
eling, and discuss the potential benefits for studying typical and atypical language processing.
� 2007 Elsevier Inc. All rights reserved.
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Introduction

In the decade since the (re)discovery that eye move-
ments provide an exquisitely sensitive on-line measure
of spoken language processing (Tanenhaus, Spivey-
Knowlton, Eberhard, & Sedivy, 1995; cf. Cooper,
1974), the ‘‘visual world paradigm’’ (VWP) has been
applied to time course questions at the level of sentences
(Altmann & Kamide, 1999; Tanenhaus et al., 1995),
phonologically based lexical competition (Allopenna,
Magnuson, & Tanenhaus, 1998), semantically based lex-
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ical competition (Huettig & Altmann, 2005; Yee &
Sedivy, 2006), and even subphonemic details of word
recognition (Dahan, Magnuson, Tanenhaus, & Hogan,
2001b; McMurray, Tanenhaus, & Aslin, 2002; Salverda,
Dahan, & McQueen, 2003).1 Typically, participants are
presented with a set of objects (on a tabletop or com-
puter display) and they follow spoken instructions to
interact with the display (touching, clicking, or moving
objects) or answer spoken questions about the display.
ed.

1 The VWP has been applied to many more aspects of
language processing; for a sense of the range, see the examples
collected in Trueswell and Tanenhaus (2005) and Henderson
and Ferreira (2004).
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In contrast to conventional psycholinguistic techniques
like lexical decision or naming, one typically obtains
multiple data points during processing for each trial.

For example, in a display containing beaker, beetle,

speaker, and carriage, as a participant hears an instruc-
tion like click on the beaker, he might generate an eye
movement to beetle when only the first two segments
have been heard, and then look to the beaker 100 ms
later. This leads to trial-level data schematized in the
upper row of Fig. 1. At any moment on a single trial,
a participant can either fixate an object or not, so trial
level proportions are 0 or 1 for each item of interest at
any point in time. Trial data are averaged over items
and participants in order to arrive at a time course esti-
mate like that shown in the bottom of Fig. 1. From the
data of Allopenna et al. (1998), for example, we learn
that fixation proportions map onto phonetic similarity
over time; by the time listeners are hearing the /i/ in a
word like beaker, they are equally likely to be fixating
the target or a cohort (like beetle), while rhymes (like
speaker) are fixated less and later (but more than unre-
lated items, like carriage). VWP data stand in stark con-
trast to data from tasks like lexical decision, where the
data points represent single, post-perceptual measures.
As a result, the VWP provides fine-grained data in the
context of a natural task. However, there are three
important gaps in current analyses of this paradigm.
We describe each briefly, and then describe our
approach to filling these gaps.
Fig. 1. Schematic of typical eye movement averaging for the visual wo
fixate one object at a time, giving a time series of 0.0 and 1.0 proportio
across items and participants) to yield continuous time-course estima
First gap: appropriate analysis of time

Although the paradigm’s most powerful contribution
is the ability to estimate the fine-grained time course of
activation and competition among linguistic representa-
tions, when the data are analyzed statistically, time is
usually ignored or treated inappropriately. Figs. 2–4
illustrate typical approaches. In the simplest strategy,
standard general linear model (GLM) analyses, such as
analysis of variance or t-tests, are applied to a greatly
compressed representation of the time course data.
Fig. 2 and the left columns of Figs. 3 and 4 schematize
this approach; mean fixation proportion to each item
is computed for a single window of analysis on the time
course data (top in each figure), resulting in data like
that schematized in the lower panels of each figure.
While this approach minimizes the number of GLM
assumptions violated (cf. Chambers, Tanenhaus, &
Magnuson, 2004; Magnuson, Tanenhaus, Aslin, &
Dahan, 2003), it expressly discards the precious fine-
grained detail the VWP provides. The data are presented
graphically in continuous time course form, but statisti-
cal analyses are applied to the radically reduced mean
proportions. Aside from the loss of grain, this approach
works well for data where relations among items of
interest are stable across the analysis window (as in
Fig. 3). For cases where, however, there is a change in
the rank order of fixation proportions over time (e.g.,
where one competitor type dominates early in the time
rld paradigm. For individual trials (top), a participant can only
ns for each possible fixation target. Trials are averaged (typically
tes of, e.g., lexical activation and competition.



Fig. 2. Schematic of ‘‘area’’ analyses. Proportions over time for
a target, competitor, and unrelated item (top) are converted to
single numbers—average fixation proportion over the entire
time window (or some smaller window).
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course, but another does later, or, as in Fig. 4, there is an
interaction with time in a comparison of targets from
different conditions), this approach is obviously inap-
propriate, as it does not retain any detail about time
course.

Another common approach is to calculate mean fix-
ation proportions in successive windows of analysis
(right columns of Figs. 3 and 4), and to perform a
repeated measures analysis on mean fixation propor-
tions across windows (Allopenna et al., 1998). This pre-
serves more of the time course, but there are typically no
independent principles for determining the ‘‘correct’’
time windows and different size windows can produce
very different results. More importantly, this approach
treats time as a factor with levels corresponding to indi-
vidual time windows. This analysis naturally focuses on
whether the patterns of data in some time windows differ
from patterns in other windows, not on the trajectory of
change over time (i.e., the estimate of the time course of
cognitive processing), which is the unique insight pro-
vided by the VWP.

We describe a statistical approach, growth curve anal-

ysis (GCA), which builds on techniques explicitly
designed to assess change over time (Singer & Willett,
2003). These techniques have been applied primarily to
longitudinal behavioral data in the developmental liter-
ature. To apply it to VWP data, eye tracking data are
treated as longitudinal data collected on a fast time
scale. The approach provides a formal model of the
impact of differences between conditions and/or individ-
uals on parameters (such as intercept and slope) of indi-
vidual · condition curves of fixation proportions over
time. We will introduce the method in detail and then
by example after discussing the other gaps in current
approaches to VWP data.

Second gap: characterizing individual differences

Researchers who have examined trial-by-trial data
from the VWP know that there is substantial between-
participant variability; to the best of our knowledge
there have been no attempts to assess this variability,
and so its implications are unknown. Simply describing
these differences is an important step—how well do mea-
sures of central tendency describe the range of perfor-
mance observed, and how is performance distributed
over that range? Under growth curve analysis, parame-
ters are estimated that characterize individual differ-
ences. The mere characterization of variability across
individuals provides a starting point for analyzing indi-
vidual differences. Our approach goes further, with the
aim of unpacking whether individual differences stem
from differences in language processing or other pro-
cesses, such as motor-decision processes controlling eye
movements.

Third gap: interpreting individual differences

Going beyond description and unpacking individual
differences requires that we grapple with some vexing
methodological questions about the VWP. There are
compelling arguments that fixation probabilities over
time provide an exquisitely sensitive estimate of linguis-
tic processing (given, for example, that fixations map
onto phonetic similarity over time down to a subphone-
mic level; Dahan et al., 2001b). However, eye movement
behavior in the VWP is influenced by the contents of the
display (Dahan, Magnuson, & Tanenhaus, 2001a), and
we expect individual differences in motor-decisional
thresholds for saccades. We will present a strategy for
grappling with these issues by comparing growth curve
analysis with simulations of the TRACE model of
speech perception (McClelland & Elman, 1986) coupled
with a simple decision model that converts TRACE acti-
vations to predicted fixation proportions over time
(Allopenna et al., 1998; Dahan et al., 2001a). Specifi-
cally, we test combinations of TRACE and decision
parameters for simulating individual and individ-
ual · condition data. It may be possible to fit the same
data by changing TRACE parameters or decision model
parameters. To the degree that individual data can be fit



Fig. 3. Area analyses comparing target proportions in different conditions with a single time window (left) and three successive time
windows (right). A common approach is to define a series of time windows (often many more than three) and to include ‘‘window’’ in a
repeated measures ANOVA (violating independence assumptions, since successive windows are strongly related).
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by TRACE but cannot be fit by the decision model, we
can provisionally attribute individual differences to var-
iation in linguistic processing. With a model like
TRACE, we can further explore the range of model
parameters that provide good individual · condition fits
to generate causal hypotheses regarding differences in
linguistic processing. When applied at the individual or
group level, this approach has promise for illuminating
characteristics of language impairments.

In the next section, we provide a brief, fairly informal
introduction to growth curve analysis. Then we turn to
practical examples, analyzing some recent VWP spoken
word recognition results. We begin with examples at the
group level, and then demonstrate assessment of individ-
ual differences using growth curve and TRACE models.
We close with a brief discussion of implications and
alternative approaches. Readers interested in applying
growth curve modeling should see Singer and Willett
(2003). The book is refreshingly accessible, and there is
an accompanying web site with sample code for SAS,
SPSS, and S+/R. In addition, we provide general step-
by-step instructions for GCA in the Appendix A, and
SAS and R code and raw data for the analyses presented
here are available at http://magnuson.psy.uconn.edu/
GCA (we have run the analyses in SAS and R, though
many statistical packages have multi-level modeling
capabilities and any of them should be able to conduct
growth curve analyses).
Growth curve analysis

The growth curve modeling approach to analyzing
data from the VWP rests on the assumption that the
properties of the task (the characteristics of the
selected words, the visual display, etc.) create an
underlying probability distribution of fixation loca-
tions (i.e., targets, competitors, distractors, etc.) over
time. The observed fixation proportions reflect this
underlying distribution. The goal of the analytic
approach is to describe the functional form of the
probability distribution. It is not a model of the
underlying processes (just as ANOVA would not
be). Rather, the method quantifies the major aspects
of the distribution that result from the underlying
processes. This statistical approach provides appropri-
ate and rigorous quantification of observed data,
including significance tests.

http://magnuson.psy.uconn.edu/GCA
http://magnuson.psy.uconn.edu/GCA


Fig. 4. An example of a case where multiple windows are required to capture change over time; in this case, target proportion interacts
with time. Two or more windows are required to capture this interaction, but window selection is problematic (see text).
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Growth curve modeling was developed for classical
longitudinal designs, in which data collection is typically
done over months or years. However, the key structural
issues are the same whether measurements are made
over a few seconds or over multiple years. We will out-
line the basic architecture of the model and then show
how it can be easily adapted to the VWP.

Growth curve modeling, and its close cousin, hierar-
chical linear modeling (Raudenbush & Bryk, 2002), are
part of a family of techniques that represent a general-
ization of standard regression approaches, such as
ordinary-least-squares (OLS). The major innovation is
that, conceptually, growth curve models contain two
(or more) hierarchically related submodels, rather than
a single model that applies to the entire sample. The first
submodel, usually called level-1, captures the effect of
time. To introduce this concept, consider an experiment
in which each individual participated in only one condi-
tion. This makes individuals the smallest grain of analy-
sis in the model hierarchy and the following model gives
a value for the dependent measure, Y, for an individual
participant, i, at a particular measurement occasion, j.

Y ij ¼ a0i þ b1i � Timeij þ eij ð1Þ

The i subscript here indexes individuals and j indexes
measurement occasions. As in OLS regression models,
we have an intercept, a0i, a slope, b1i, and an error term,
eij. However, unlike standard models, the intercept and
the slope are allowed to vary across individuals, hence
the i subscripts. This variation is captured in the second
set of models, called level-2 models. That is, there is
potentially a level-2 model for each parameter of the
level-1 model, which describes that level-1 parameter
in terms of population means, fixed effects, and random
effects.

When we move to the level-2 models, the equations
become a bit more complex. In particular, as we break
the intercept and slope down into structural and sto-
chastic components, we will refer to them using one var-
iable to represent structural components (gamma: c) and
another to represent stochastic components (zeta: f).
Subscripts will indicate whether we are referring to inter-
cept or slope. For example, terms at level-2 where the
first subscript is 0 refer to intercept components and a
first subscript of 1 indexes slope components (as will
become clear shortly). This notational complexity has
two benefits. First, it is consistent with the conventions
of Singer and Willett (2003). Second, this notation facil-
itates working with the polynomials. As we move to fit-
ting more complex curves, we will add further
polynomial terms. These terms will continue to be
referred to by the same variables (c,f) with the first index
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indicating the polynomial order (0 = intercept, 1 = slope
[linear], 2 = quadratic, 3 = cubic, etc.).

The level-2 model for the intercept is: a0i = c00 + f0i,
where c00 is the population average value for the inter-
cept and f0i is the deviation of an individual’s intercept
from the average intercept. The residual term, f0i, allows
each individual’s intercept in the first model, a0i, to vary
around the population average intercept, c00. The anal-
ogous model for the slope is: b1i = c10 + f1i, where c10

is the population average value for the slope and f1i is
the deviation of an individual’s slope from the average
slope. The residual term, f1i, allows the slope parameter
in the first model, b1i, to vary around the population
average slope, c10.

If we substitute the models just specified for the inter-
cept and slope into the first equation, we get:

Y ij ¼ ðc00 þ f0iÞ þ ðc10 þ f1iÞ � Timeij þ eij ð2Þ

To facilitate an analogy to standard OLS regression, it is
useful to reorganize the model into its structural and sto-
chastic portions:

Y ij ¼ c00 þ c10 � Timeij þ ðeij þ f0i þ f1i � TimeijÞ ð3Þ

Considered this way, the current model is closely analo-
gous to an OLS regression model (c00 is analogous to the
intercept, c10 to the slope), but the error term is now the
sum of three components. The terms in the parentheses
(i.e., eij + f0i + f1i * Timeij) collectively represent error in
this model. For current purposes, we adopt this stan-
dard error covariance structure, but we note that many
other structures can also be specified within this
framework.

The residual term, eij, retains its usual meaning and
assumptions; it is drawn from a normal distribution with
a mean of zero and its values are independent across per-
sons and measurement occasions. Each individual also
has a constant added to each measurement occasion,
the residual term f0i, and another residual, f1i, that inter-
acts with Time. These latter two terms allow error to be
correlated across measurement occasions, as one might
expect when measurements are repeated for each individ-
ual. The product term, f1i * Timeij, allows error to be het-
eroscedastic within each individual. That is, the effect of
this residual depends on the magnitude of Timeij. These
latter two residual terms, f0i and f1i, are also assumed
to have means of zero and to be drawn from a bivariate
normal distribution, with unknown variances and covari-
ance. These terms are homoscedastic across individuals
and constant across an individual’s measurement occa-
sions (see Singer & Willett, 2003, pp. 243–265, for a more
complete discussion of the composite error term).

The level-2 models can also include structural terms
that capture the effects of different experimental condi-
tions. For example, the model for the intercept (a0i in
Eq. (1)) can be expanded to include an effect of some
condition, C:
a0i ¼ c00 þ c0c � C þ f0i ð4Þ

The potential effect of condition that could be captured
here would be on the intercept itself, the value at which
all other level-1 predictors are zero. A similar model
would be used to capture the effect of condition on the
slope (b1i in Eq. (1)):

b1i ¼ c10 þ c1c � C þ f1i ð5Þ

Here condition affects the rate of change over time.
Much of the power of the growth curve approach lies
in its ability to describe these over-time curves using sim-
ple linear equations at level-1 and model the effects of
different conditions through the parameters within those
equations at level-2. A level-2 model can be specified for
each of the polynomial terms. The first term in each
level-2 model can be considered the population average
for the polynomial term, cn0, where n indicates the order
of the level-1 term (i.e., c00, c10, c20, c30, c40, for the inter-
cept, linear, quadratic, cubic, and quartic, respectively).
This parameter estimates the value of the polynomial
term when all other terms in its particular level-2 model
are zero. The second term, cnc, indexes the effect of
condition, C, on the polynomial term. If there are more
than two conditions and they are categorically distinct
(e.g., three or more word types or three or more training
types), it may be necessary to include multiple condition
terms. That is, the model would set one of the conditions
as a baseline and estimate parameters for each of the
other conditions relative to the baseline.

The final term, fni, is an error term that allows for
individual (or individual · condition) variation around
these effects. In theory, all level-2 models can have error
terms. However, in practice, it would be unusual to
include all of them in the model. The error terms, also
called random effects, are quite ‘‘expensive’’ in terms of
the amount of data needed to estimate them. A hidden
cost is that the model must estimate not only the variance
of the random effect, but also a covariance parameter
with all other random effects in the model. Thus, the
number of variance/covariance parameters required
grows geometrically with the addition of random effects.
These random effect error terms capture the structure in
the data not explained by the fixed effects, thus, they play
two important related roles: statistically, they make the
model describe the data more accurately; theoretically,
they describe relationships in the data not captured by
fixed effects. Which random effects should be included
in a particular analysis depends on the expected error
structure and the research questions under investigation.
In typical VWP data, participants are likely to differ in
the rate of activation of lexical representations; thus, lin-
ear and quadratic random effects are likely to be the most
important both for capturing the error structure and for
quantifying individual differences for further analysis, as
we shall see later.
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Thus far, we have considered the level-1 model as
representing the trajectory of an individual’s perfor-
mance over time. However, in many experiments, we
have individuals in more than one condition, thus mak-
ing the combination of individual and condition the
smallest grain of analysis. The model is completely indif-
ferent to whether the level-1 trajectories come from indi-
viduals or individuals · conditions. Likewise, the effect
of being in a condition and the effect of being a particu-
lar person can both be represented in the level-2 models.
That is, the model can tease apart differences in curve
parameters (intercept, slope, etc.) that are attributable
to conditions from those that are attributable to individ-
uals. To make this point more concrete, the following
model includes both an effect of condition, C, and of
person, P, on the slope:

b1k ¼ c10 þ c1c � C þ c1p � P þ f1k ð6Þ

where k indexes individuals · conditions (in practice, P

would naturally be a set of dummy-coded variables,
rather than a single scalar). This is an extension of Eq.
(5), which only had an effect of condition.
Time
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Fig. 5. Schematic of multilevel linear model approach. The top left p
model that includes an effect of participant P, triangles and circles corr
a level-2 model that includes an effect of condition C, solid and dashed
panel combines these level-2 models so that both condition and parti
Fig. 5 schematically demonstrates the relationship
between level-1 and level-2 models. In the top left panel
a level-1 linear model is represented. In the bottom left
panel the intercept term is replaced by a level-2 model
that includes an effect of the difference between two con-
ditions (as in Eq. (4)), where the solid line is the data
from one condition and the dashed line is the data from
the other condition; in the top right panel a similar sub-
stitution is made for a level-2 model that includes an
effect of the difference between two participants, where
the circles are data from one participant and the trian-
gles are data from the other participant. In the bottom
right panel the intercept term is replaced by the full
level-2 model including effects of condition and partici-
pant (analogous to Eq. (6)). The condition term captures
the effect of condition C on the intercept and the partic-
ipant term captures the effect of individual participant P

on the intercept. A separate parameter estimated for
each participant and variation across these parameters
characterizes the variation in intercepts between partici-
pants. By extending this approach to the other terms in
the level-1 model, we can evaluate the effect of
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lines correspond to two different conditions. The bottom right
cipant effects are represented.
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condition and participant on other terms (slope, qua-
dratic, etc.).2

In introducing the level-1 model, we have initially
included only two terms, the intercept and slope, to
describe the curve. This would limit the model to repre-
senting straight lines. However, the model is easily
expanded to capture more complex forms. One way to
accomplish this is through the use of power polynomials
(an alternative approach is to use other non-linear func-
tions, such as the logistic; while this approach is very
much in the same spirit, we believe power polynomials
afford important advantages for many research applica-
tions, as we discuss in more detail below). Power poly-
nomials are capable of representing the curvilinear
relationship between fixation proportion and time. A
standard way to create the power polynomials is to sim-
ply raise Time to a particular power. For example, a
quadratic curve (i.e., a curve with a single inflection)
can be represented by introducing Time2; a cubic curve
(two inflections) by further including Time3. One issue
with creating the polynomials in this way is that the
terms (e.g., Time, Time2, Time3) are highly collinear.
Therefore, introducing a higher order term (e.g., Time3)
changes the estimated effects of lower order terms (e.g.,
Time2). This is particularly problematic when one wishes
to model effects on those lower order terms. For exam-
ple, one might wish to test an effect of condition on
the first-order (linear) time term, but also wish to cap-
ture the curvilinear nature of the relationship by adding
the squared term, Time2. In this circumstance, it is
inconvenient for the squared term to influence the linear
term, as the experimental effect is hypothesized to be on
the linear term.
2 In order to test the robustness of experimental effects,
researchers may be interested in testing items effects. Since
visual world paradigm studies typically involve a single trial per
item per participant and data from a single VWP trial consist of
a sequence of categorical fixations rather than a smooth fixation
probability curve, it is not possible to use GCA on partici-
pant · item data. However, analysis of items effects can be
conducted by averaging over participants for each item in the
experiment (i.e., the standard approach for items effects
ANOVAs). In terms of the model, the only change is that item
effects are entered rather than participant effects and, depending
on experiment design, the analysis may change from within-
participants to between-items or vice versa (with the standard
consequences for statistical power). Interpretation of the terms
and item effects on those terms follows the same logic as
interpretation of participant and condition effects. We discuss
below the advantages of GCA for analysis of differences
between individual participants, and the same advantages apply
to the analysis of differences between items; that is, by-items
GCA determines whether an effect is statistically reliable across
items (the typical goal of by-items ANOVA) and can quantify
the differences between items for subsequent analysis.
One strategy to avoid this issue is to employ orthog-
onal power polynomials. The orthogonal polynomials
are linear transformations of the non-orthogonal poly-
nomial terms just described, but they are uncorrelated
with one another. Specifically, they are the orthonormal
basis vectors for the space defined by natural polynomi-
als of a given order and given number of time steps
(many statistical software packages, including R and
SAS, have built-in functions for computing orthogonal
polynomials). Because the time vectors are orthogonal,
they are mutually independent (perpendicular); thus,
including a higher-order term does not change the value
of the estimated lower-order terms. Higher-order models
could also contain higher-order residual error terms (i.e.,
f2i, f3i, etc.), which would capture heteroscedasticity of
residuals over time. The second-order term (f2i * Time2)
is of particular importance because variance in VWP
data tends to be low at the tails (the asymptotic portions
of the curve) and high in the middle.

To illustrate the ability of power polynomials to rep-
resent fairly complex functional form, we generated a
data set using a fourth-order polynomial. This allows
us to demonstrate how the terms (intercept, linear, qua-
dratic, cubic, and quartic) independently affect the form
of the curve. Each panel of Fig. 6 shows data from the
fourth-order model with three different values for one
of the terms, with remaining terms held constant. The
top row shows hypothetical target fixation curves
(roughly monotonically increasing functions) and the
bottom row shows hypothetical competitor fixation
curves (rise and fall trajectories indicating transient acti-
vation). Fig. 6 shows how the various terms contribute
to creating the curvilinear form: the intercept term
reflects an overall vertical shift in the curve (note that
the orthogonal polynomials change the interpretation
of the intercept: the intercept term now indexes the aver-
age height of the curve, making it analogous to area
under the curve), the slope term reflects the overall angle
of the curve, the quadratic term reflects the symmetric
rise and fall rate around a central inflection point, and
the cubic and quartic terms similarly reflect the steepness
of the curve around inflection points. To emphasize the
effects of 3rd and 4th order terms (which are usually low)
the solid lines in Fig. 6 reflect changes of sign (positive
vs. negative) for these parameters.

Interpreting the lower-order terms is fairly straight-
forward, but significant effects on terms higher than
the quadratic can be difficult to interpret. A general
rule-of-thumb is that the order of the terms reflects the
number of changes of focus of fixation: the intercept
(0th order) is a constant difference, the linear (1st order)
term is a single change of focus (i.e., from neutral start
to target), the quadratic (2nd order) term is two changes
in focus (i.e., from neutral start to competitor, from
competitor to target), the cubic (3rd order) term is three
changes in focus (i.e., from neutral start to target, to



Intercept Linear Quadratic Cubic Quartic

Fig. 6. Effects of manipulating individual model parameters on the shape of VWP fixation proportion curves. The top row shows
schematic target fixation curves (roughly monotonic rising indicating increasing activation), the bottom row shows schematic
competitor fixation curves (rise and fall trajectory indicating transient activation). Each panel shows three levels for a single parameter,
the middle value is shown as a dashed line for ease of interpretation.
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competitor, back to target), etc. However, in the context
of typical VWP studies, 3rd and 4th order terms may
also reflect asymmetries around curvature captured pri-
marily by the quadratic term and tend to be very sensi-
tive to the asymptotic tails of fixation proportion curves.
As a result 3rd and 4th order terms may not have clear
cognitive interpretations. Typical VWP experiment
design and fixation pre-processing assumes activation
of a particular target lexical representation or activation
and then decay or deactivation of a competitor lexical
representation. In the target case, there is a monotonic
increase in fixation proportion, so only intercept and lin-
ear terms will relate meaningfully to cognitive process-
ing. In the competitor case, there is a single peak of
fixation proportion with roughly symmetric activation
and deactivation time course, thus the intercept, linear,
and quadratic terms will relate meaningfully to cognitive
processing. Note that for target fixation data, if fixations
that occur after target selection are included in the anal-
yses (e.g., returns from the target to the central fixation
cross), the data will contain a second change of fixation
focus, thus, the quadratic term will capture important
aspects of the time course of target fixation. This
approach to handling target fixation data provides more
time course data for analysis, making possible differ-
ences in time course easier to detect statistically using
GCA (see discussion below). The cubic term would gain
a meaningful cognitive interpretation in a VWP design
that would lead participants to tend to look to an object,
then away, and then come back to it.

Fig. 6 also assists in understanding the effects of the
level-2 models. As we discuss below, the level-2 models
affect the curves through the polynomial terms them-
selves. Therefore, the figure provides a graphical repre-
sentation of what an effect on each polynomial term
means for the curve. That is, the variations shown in
Fig. 6 can be thought of as level-2 effects (such as effects
of experimental condition or individual) on level-1
parameters that determine the shape of the curve.
Practical examples of growth curve analysis

Analysis of target fixations

As an example of the growth curve approach applied
to the visual world paradigm, we present results from a
VWP investigation of effects of frequency, cohort den-
sity (sum of frequencies of words overlapping with a tar-
get at onset), and lexical neighborhood density (sum of
frequencies of words differing from the target by no
more than one phoneme) on spoken word recognition
(see Magnuson, Dixon, Tanenhaus, & Aslin, 2007, for
details). As in typical VWP experiments, on each trial,
four simple pictures were presented on a computer
screen and participants were given a spoken instruction
to click on one of the four presented pictures (e.g.,
‘‘Click on the bed’’). The frequency of occurrence,
cohort density, and neighborhood density of the target
words were manipulated (high vs. low) in a fully crossed
design yielding 8 cells with 16 words in each cell (128
total trials). The level-1 model contained 4 terms
(intercept, linear, quadratic, and cubic) and described
the over-time fixation proportion at the individual ·



Table 1
Results of target fixation analyses of frequency, cohort density
and neighborhood density effects

Model �2LL DD p<

Base 44481.99 — —

Frequency
Intercept 44475.99 6.0 .05
Linear 44474.01 1.99 n.s.

Cohort density
Intercept 44474.69 7.30 .05
Linear 44474.49 0.20 n.s.

Neighborhood density
Intercept 44481.73 0.26 n.s.
Linear 44467.40 14.33 .01
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condition level; the quartic term was unnecessary here,
because the curve only had two bends (the curve shape
is consistent in this regard across participants and condi-
tions). The analysis requires a discrete representation of
time, but the time scale resolution can be as fine as the
experimenter chooses. Indeed, unlike separate time bin
analyses, which increase the likelihood of false positives
due to multiple comparisons, greater temporal resolution
generally improves GCA performance. The effect of each
of the independent variables (frequency, neighborhood
density, and cohort density) was introduced in the level-
2 model for the intercept and linear terms. The model also
included a dummy-coded effect for each individual at
level-2.

The target fixation model fits (lines) are shown in
Fig. 7 along with the data (symbols). As can be seen
in the figure, the model reproduces the major aspects
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Fig. 7. Observed data (symbols) and model fits (lines) for
frequency (top panel), cohort density (middle panel), and
neighborhood density (bottom panel) effects. Reprinted with
permission from Magnuson et al. (2007).
of the average over-time distribution quite well. The
analysis also provides tests of the parameters. One stan-
dard significance test for adding a parameter to a model
involves the deviance statistic, often called �2LL (minus
2 times the log-likelihood). Change in deviance, DD, is
distributed as chi-square, with degrees of freedom equal
to the number of parameters added. The change in devi-
ance allows us to test whether including the parameter
increases the fit of the model, much as a change in R2

does in OLS regression. Table 1 shows the model param-
eters, deviance statistics, and significance levels.

Frequency and cohort both had significant effects on
the intercept (a0i in Eqs. (1) and (4)), but not the slope
(b1i in Eqs. (1) and (5)). These effects reflect constant
advantages for items with high frequency (due to greater
familiarity) and for items with low cohort density (due
to fewer competitors) across the window of analysis.
Neighborhood density did not affect the intercept, but
did have a reliable effect on the slope; items with a lower
neighborhood density had a steeper slope. Magnuson
et al. (2007) explain the cross-over in the neighborhood
time course from a high- to a low-density advantage as a
result of differences in the proportion of neighbors that
are also cohorts. The model predictions match the aver-
age data quite well, recreating the major form of the
curves and the condition effects on the curves.

The model also has individual-level parameters that
allow it to represent differences between individuals.
These individual differences reside within the level-2
models in two different types of parameters. In the pre-
vious section we described level-2 fixed effect parameters
that allow each individual to have a different average
trajectory. The model also captures individual differ-
ences through the random effects. The model, as we have
specified it here, estimates two residual terms for each
individual · condition trajectory, one for the intercept
and one for the slope. These residuals capture the indi-
vidual-level differences in the condition effects. That is,
they are estimates of how much adjustment should be



3 Mean curve height is equivalent to the mean fixation

proportion measure used in several VWP studies (e.g., Magnu-
son et al., 2003).

4 There are slight differences in rhyme proportions in the left
panel of Fig. 8 compared to the top panel of Fig. 2 in
Magnuson et al. (2003). The proportions displayed in the latter
graph were averaged over trials rather than participants. Since
accuracy was not 1.0, participants contributed different num-
bers of trials, and it is more conventional to show averaged
participant averages. Note that the differences are very small,
and that Magnuson et al. used participant-averaged data for
their statistical analyses.
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made to the intercept and slope terms to fit the individ-
ual · condition trajectory, given the effects of condition
and individual already in the model. Thus, the residuals
are akin to an individual · condition interaction term.

In summary, the model captures both individual dif-
ferences in average performance, via the structural or
fixed terms in the level-2 model, and individual differ-
ences in the effect of conditions via the level-2 residuals.
We consider individual differences in more detail after
presenting a second example.

Analysis of competitor fixations

The growth curve analysis method can capture both
‘‘target’’-type and ‘‘competitor’’-type curve shapes (typ-
ical differences are illustrated in the bottom of Fig. 1 and
in Fig. 6). In this section we apply GCA to data from a
word learning (artificial lexicon) study in order to exam-
ine cohort and rhyme competition in spoken word rec-
ognition and the development of these effects (see
Magnuson et al., 2003, for full description of the behav-
ioral methods; similar results were found by Allopenna
et al., 1998, using real words and no training). The
behavioral data were collected from participants learn-
ing novel names for novel geometric objects. The set
of names contained onset cohort competitors (e.g.,
pibo–pibu), rhyme competitors (e.g., pibo–dibo), and
unrelated pairs (e.g., pibo–tupa). Participants were
trained in two 2-h sessions on consecutive days. Each
session concluded with a set of test trials. On each test
trial, a target item appeared with three distractor items;
the distractors contained either one cohort competitor
and two unrelated items (‘‘cohort’’ condition), one
rhyme competitor and two unrelated items (‘‘rhyme’’
condition), or three items unrelated to the target (‘‘unre-
lated’’ condition).

Magnuson et al. (2003) used the single average pro-
portion approach and ANOVA to address three critical
questions, which we revisit here using growth curve
models: (1) does phonological similarity influence lexical
activation (measured by fixation behavior)? To answer
this question we compare fixation proportions to phono-
logical competitors (cohort and rhyme) and unrelated
items. (2) Does the time course of phonological similar-
ity (onset vs. offset) influence the time course of lexical
activation? To answer this question we compare fixation
of onset (cohort) and offset (rhyme) competitors. (3) Do
the patterns of lexical activation change over the course
of learning? To answer this question we compare results
from the first test session (after 1 day of training) to
results from the second test session (after 2 days of
training).

The data were fit using the same approach as the tar-
get fixation data (a 4th-order term was added because
there are now three bends in the curve). The effects of
condition were evaluated in the level-2 models. The sym-
metric rise-and-fall shape of competitor-type fixation
proportion curves suggests that differences in amount
of competition should primarily impact the intercept
and quadratic terms, since orthogonal polynomial inter-
cept effects correspond to differences in average height of
the curve3 and quadratic effects correspond to differ-
ences in rise/fall rate (note that the quadratic term cap-
tures symmetric differences in rise and fall rate and
asymmetric differences would be captured by linear
and/or cubic terms). For the three-condition compari-
son, the unrelated condition was used as a baseline
(via dummy-coding) and separate parameters were esti-
mated for the cohort and rhyme conditions for each time
term.

Table 2 shows the results of this analysis for day 1
and day 2 data and the behavioral data and model fits
are plotted in Fig. 8.4 The model fit data reflect the
impact of adding both cohort and rhyme effects on each
time term. Except for the cubic term, condition effects on
all time terms improved model fit and, as predicted, the
largest effect was on the quadratic term. That is, the dif-
ference between phonological competitors (cohort and
rhyme) and unrelated controls was primarily in the rise
and fall of the fixation probability curves.

We can further examine whether each parameter esti-
mate was reliably different from the baseline condition
(dummy-coding requires a baseline for comparison),
which in this case was the unrelated distractor condition.
Table 2 shows the level-2 parameter estimates for cohort
and rhyme relative to the unrelated baseline—the effects
were highly consistent, showing very strong effects on
intercept and quadratic terms and weaker effects on
slope for both conditions. These results indicate that
both cohort and rhyme competitor fixation were reliably
different from unrelated fixation on both days of testing.

To compare cohort and rhyme competitors directly
we restricted the analysis to just those two conditions.
With only two conditions, the DD significance directly
indexes the difference between the two conditions, so
tests of significance on parameter estimates are generally
redundant. The results (Table 3) indicate that on day 1
there was no difference between cohort and rhyme com-
petition (only the 4th order term marginally improved



Table 2
Results of three condition competitor fixation analyses

Model Model fit Parameter estimates

Cohort Rhyme

�2LL DD p< Est. t p< Est. t p<

Day 1
Base 5966.7 — — — — — — — —
Intercept 5978.3 11.6 0.01 0.05884 3.87 0.001 0.05681 3.73 .001
Linear 5985.3 7 0.05 0.1676 2.47 0.05 0.1461 2.15 .05
Quadratic 6061.0 75.7 0.00001 �0.2284 7.83 0.0001 �0.2122 7.27 .0001
Cubic 6063.2 2.2 n.s. �0.03925 1.34 n.s. �0.03629 1.24 n.s.
Quartic 6073.1 9.9 0.01 0.09065 3.11 0.01 0.03501 1.20 n.s.

Day 2
Base 12251.7 — — — — — — — —
Intercept 12279.4 27.7 0.0001 0.08762 6.40 0.0001 0.04608 3.37 .001
Linear 12289.3 9.9 0.01 0.1862 3.04 0.01 0.1476 2.41 .05
Quadratic 12431.4 142.1 0.00001 �0.2264 11.75 0.0001 �0.07479 3.88 .0001
Cubic 12431.8 0.4 n.s. 0.00410 0.21 n.s. 0.01194 0.62 n.s.
Quartic 12436.9 5.1 0.05 0.03972 2.06 0.05 0.03575 1.86 .1

Fig. 8. Observed (symbols) data for cohort competitors (squares), rhyme competitors (triangles) and unrelated distractors (x’s) and
model fits (lines). Error bars indicate ±1SE. On day 1, there is equivalent cohort and rhyme competition (higher fixation proportion for
competitors than unrelated items); on day 2 the time course of cohort and rhyme competition is significantly different (see text for
details).
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model fit), but on day 2 there was a significant effect of
condition (cohort vs. rhyme) on intercept and quadratic
terms. That is, differences in the time course of phono-
logical similarity produced differences in mean fixation
proportion and in rise/fall rates of fixation probability.
These results are completely consistent with the analyses
used by Magnuson et al. (2003), but stem from an anal-
ysis paradigm expressly designed to characterize change
over time and provide the opportunity for analysis of
individual differences, which is the focus of the next
section.
Individual differences in VWP data

The previous sections demonstrate that growth curve
analysis provides a robust and powerful statistical tool
for understanding the time course of effects of experi-
menter-manipulated variables such as word frequency
and phonological similarity. In addition, this analytic
method can quantify individual participant effects for a
variety of within-participant designs. For within-partic-
ipant designs, the level-2 models carry information
about individual differences averaged over conditions



Table 3
Results of cohort–rhyme competitor fixation analysis

Model �2LL DD p<

Day 1
Base 2388.2 — —
Intercept 2388.2 0.0 n.s.
Linear 2388.3 0.1 n.s.
Quadratic 2388.5 0.2 n.s.
Cubic 2388.5 0.0 n.s.
Quartic 2391.1 2.6 .1

Day 2
Base 6215.0 — —
Intercept 6221.3 6.3 .01
Linear 6221.6 0.3 n.s.
Quadratic 6264.2 42.6 .0001
Cubic 6264.3 0.1 n.s.
Quartic 6264.4 0.1 n.s.
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(i.e., does a particular individual tend to look more
quickly to the target?) and individual · condition effects
(i.e., is the effect of this factor different for this individual
relative to the effect of this factor for other individuals?).
Thus, the analyses reveal quite a bit about individual dif-
ferences, in addition to the usual information about the
effects of experimental manipulations.

To demonstrate how GCA allows us to address indi-
vidual differences, we return to the data from Magnuson
et al. (2007). Recall that the level-1 model described the
over-time trajectory using a third-order polynomial. We
allowed individual effects to enter the model through
each of the four terms (i.e., intercept, linear, quadratic,
and cubic). This allows individual participants to have
level-1 models with different values for each of these
Table 4
Correlations among individual participant effects on intercept,
linear, quadratic, and cubic parameters

Intercept Linear Quadratic Cubic

Intercept 1.0 0.66* �0.60 �0.32
Linear 0.66 1.0 �0.35 �0.58

Quadratic �0.60 �0.35 1.0 0.11
Cubic �0.32 �0.58 0.11 1.0

Bold = p < .05; *p < .01.

Table 5
Correlations among individual · condition intercept and linear term

Intercept-Cohort Linear-Coh

Intercept-Cohort 1.0 �0.19
Linear-Cohort �0.19 1.0
Intercept-Frequency 0.55* �0.28

Linear-Frequency �0.15 0.14

Bold = p < .05; *p < .01.
terms. The model estimates these individual-level
parameters. Table 4 shows the correlations among these
estimated individual effects. Individual differences in
how participants look to the target (averaged over con-
ditions) are interrelated. A theory of looking behavior
should be able to account for such individual differences,
in addition to manipulated effects.

The Magnuson et al. (2007) experiment compared
three key lexical characteristics (frequency, cohort, and
neighborhood), and so individual differences in the effects
of the manipulations are of particular interest. We can
ask, for example, whether the effects of each manipulation
are stable across participants, or whether there are indi-
vidual differences in the relation of each manipulation to
the others. To simplify the exposition, we focus on the fre-
quency and cohort effects. In this case, GCA tells us how
participants differ from each other in their response to the
frequency and cohort manipulations. Recall that there
was an effect of frequency on the intercept, such that the
curve for higher frequency words was shifted up relative
to lower frequency words. There was also an effect of
cohort density on the intercept; the curve was shifted
upwards for words with low cohort density compared to
those with high cohort density. The level-2 models include
a residual term for each individual · condition combina-
tion. The residual terms carry information about the
degree to which this individual · condition trajectory dif-
fers from the average trajectories for both this condition
and this individual.

To obtain the estimated individual · condition effects
for the frequency and cohort density manipulations, we
averaged the residuals over the levels of the other vari-
able. This gives us four residual values for each individ-
ual for both the intercept and the slope (see Appendix A
for a more detailed explanation of how these residual
values are computed). The bivariate correlations among
these individual · condition effects are shown in Table 5.
The individual · condition effects on the intercept are
moderately related to one another. This means that, in
terms of the height of the curve, individual differences
in the effect of frequency are related to individual differ-
ences in the effect of cohort density. Consider the impli-
cations of this relationship for the condition effects
presented in Fig. 7. Note that the effects are in opposite
directions, and hence have parameter estimates with
residuals

ort Intercept-Frequency Linear-Frequency

0.55* �0.15
�0.28 0.14

1.0 �0.094
�0.094 1.0
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opposite sign. Positive residuals amplify the positively
signed effects, but reduce negatively signed ones, and
vice versa. Therefore, the positive relationship between
the residuals implies that participants with strong cohort
density effects have weak frequency effects. That is, a
positive relationship between residuals is a negative rela-
tionship between frequency and cohort effect sizes
because the effects are in opposite directions.

These individual difference patterns (negative rela-
tionship between individual participant frequency and
cohort effects and lack of relationship between condition
effects and overall curve shape) provide relatively strong
constraints on cognitive theories of individual variation
among healthy college-age adults. As a first step towards
understanding these patterns in cognitive terms we
examined whether changes in the dynamics of processing
in the TRACE model would produce the behaviorally
observed pattern. In the case of spoken word recogni-
tion, the TRACE model (McClelland & Elman, 1986)
has proved a particularly fruitful means of modeling
VWP data, providing a concrete testbed for mechanistic
hypotheses regarding the time course of word recogni-
tion (e.g., Allopenna et al., 1998; Dahan et al., 2001a,
2001b). The TRACE model is composed of three pro-
cessing levels (features, phonemes, and words) with bi-
directional information flow between levels, and several
parameters governing processing within and between
levels (e.g., feedforward and feedback gain, decay rates,
etc.). Hypotheses regarding individual differences can be
tested by examining whether manipulation of the corre-
sponding parameters produces the behaviorally
observed pattern of variability across individuals. Of
particular interest were the following two questions:
(1) is the observed variability more likely to be due to
decision-level differences or linguistic processing differ-
ences? (2) Is the observed variability more likely to be
due to lexical processing differences or phonological pro-
cessing differences?
Table 6
TRACE parameters with default (standard) values, value range tested
results

Parameter Computational function Default
value

Value
range

k Response competition 7 2–12 Pri
and

apw Phoneme-to-word weights 0.05 .01–.09 Po
(fre

dp Phonological decay rate
(working memory)

0.03 .01–.05 Va

dw Lexical decay rate
(working memory)

0.05 .01–.09 Va

cw Lexical layer competition 0.03 .01–.05 Po
effe

s Frequency sensitivity 0.13 .03–.23 Ne
Simulations were carried out using jTRACE (Strauss,
Harris, & Magnuson, 2007). We began with the stan-
dard TRACE parameter values, and then modified a
small subset to model individual differences, as we
describe below. jTRACE includes the three frequency
implementations (resting level, post-perceptual, and bot-
tom-up connection strength) described by Dahan et al.
(2001a). We used the bottom-up connection strength
implementation, in which connections from phonemes
to words are proportional to word frequency. A 270-
word lexicon was specially designed to manipulate
cohort size and word frequency independently. To that
end, the lexicon contained cohorts that were large (more
than 20 words) or small (less than 5 words). One to three
words were selected from each cohort to be target words
(1 for small cohorts, 2–3 for large cohorts). Half of these
target words were randomly assigned to the high fre-
quency condition by setting their frequency to 10, and
all other word frequencies were set to 1. This set of mate-
rials was designed to create a relatively simple context
for testing the effects of different parameters on cohort
and word frequency effects. A natural lexicon would
be expected to produce the same results, though the lim-
itations of the TRACE model’s phonetic inventory
make it difficult to create strong independent manipula-
tions of cohort density and frequency.

With the standard TRACE parameters, the target
words showed robust frequency and cohort size effects.
We tested the effects of manipulating six parameters
(described below). For each parameter tested, 15 ‘‘indi-
vidual’’ simulations were carried out holding all param-
eters constant except the test parameter, which was
manipulated in equal steps from very low to very high
(specific values depended on the parameter tested).
Model fixation probabilities were computed from activa-
tions using Luce (1959) choice rule and the four-alterna-
tive-forced-choice linking hypothesis (the simpler
version of Allopenna et al., 1998, method described by
in individual difference simulations, and the general pattern of

General pattern

mary variability in curve shape with positively correlated cohort
frequency effects

sitive correlation between frequency and cohort effects
quency effects more variable)

riability in cohort effects but not in frequency effects

riability in cohort effects but not in frequency effects

sitive correlation between frequency and cohort effects (cohort
cts more variable)
gative correlation between frequency and cohort effects
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Dahan et al., 2001a). The decision model we used to
convert TRACE activations to response probabilities
contains only one free parameter (k, in the Luce choice
rule), which we manipulated to test the hypothesis that
the behavioral individual differences were due to deci-
sion-level differences. Five other parameters governing
lexical- and phoneme-level dynamics were also tested.
Only the phoneme-to-word frequency weight scaling
parameter (s; see Dahan et al., 2001a for details) pro-
duced the behaviorally observed pattern of a negative
relationship between individual participant frequency
Fig. 9. TRACE ‘‘individual difference’’ plots of cohort (first and th
manipulation of k (top two rows) and s (bottom two rows). Manipula
effects tend to increase together. Manipulation of s has small impact
effects.
and cohort effects and a lack of relationship between
condition effects and overall curve shape (Table 6 sum-
marizes the general patterns of variability for each
parameter tested).

Fig. 9 shows cohort and frequency effects for three
values (low, medium/default, and high) of k and s. Var-
iation of the decision-level k parameter (top two rows of
Fig. 9) produced large variability in curve shape (smaller
values of k produced much less sharp curves) and this
difference was related to both cohort (top row) and
frequency (second row) effect sizes, which were highly
ird row) and frequency (second and fourth row) effects under
tion of k primarily affects curve shape and cohort and frequency

on curve shape and opposite effects on frequency and cohort



5 Note that the approach of comparing model and human
data we have illustrated here is quite general, and could be used
more simply to compare candidate models to human data. For
example, one could apply GCA to high and low frequency
target trajectories in human data, and to one or more sets of
simulation data (from a single model with parameter variations,
or more distinct models). Then one can ask whether the GCA
results from one model are qualitatively more similar to the
human data, or perhaps specify how the model and human data
diverge (e.g., are effects observed in the same terms for the
human and model GCA results?).
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positively correlated (i.e., as k varied, frequency and
cohort effect sizes increased and decreased together).
This pattern is not consistent with the observed behav-
ioral data, suggesting that the behaviorally observed
individual differences were not due to decision-level dif-
ferences (with the caveat that one might be able to model
these differences with a different decision model).

In contrast, variation of s (bottom two rows of
Fig. 9) had very little impact on overall curve shape
and increasing values increased frequency effects
(Fig. 9, bottom row) and decreased cohort effects
(Fig. 9, third row). It is trivial that increasing the fre-
quency scaling parameter would increase frequency
effect size, but the decreasing of cohort effect size
requires some analysis. We found that the decrease in
cohort effect size was driven by high frequency items
because their low frequency cohort competitors could
not keep up with the high frequency targets. That is,
as frequency differences become exaggerated, the effect
of competition from low frequency cohort competitors
was reduced for high frequency target words. There
was virtually no effect of s on the cohort effect for low
frequency items because the difference between average
cohort competitor frequency and target frequency was
much smaller for low frequency targets than for high fre-
quency targets. Although this pattern is not a necessity
(higher frequency words could have higher frequency
cohorts), it is reasonable that high frequency words
would be more likely to ‘‘stand out’’ above their cohort
more than low frequency words. Indeed, even though
cohort density (summed cohort frequencies) was con-
trolled, this pattern was true of the words used in the
behavioral experiment (Magnuson et al., 2007) as well:
for low frequency items, mean target log frequency
was 2.4 and mean cohort log frequency was 1.7; for high
frequency items, mean target log frequency was 4.7 and
mean cohort log frequency was 1.6.

This examination of the model makes a strong pre-
diction for the behavioral data: the between-participant
variability in cohort effect size should be larger for high
frequency items than for low frequency. That is, the
individual participant random effects for the cohort term
should be larger for high frequency words than low fre-
quency words. A simple test of this prediction is to
examine the variance in the intercept term for low and
high frequency conditions separately; the high frequency
conditions should have greater variability in the inter-
cept term. The behavioral data were consistent with this
prediction: the estimated variance for low frequency
conditions was 3841.54, and for high conditions it was
5687.00, F(59,59) = 1.48, p < .07. This post-hoc analysis
is consistent with the TRACE model prediction that
individual differences in cohort effect size occur more
for high frequency words and lends further support to
the claim that TRACE model frequency scaling param-
eter s captures differences among the college-age adult
participants. We leave for future research the additional
behavioral testing required to test this prediction fully.
As our goal was simply to demonstrate the approach,
we have not attempted to address these patterns at a the-
oretical level by considering, for example, why there
should be individual differences in frequency gain; future
research will address this question.

This section described how growth curve analyses
can be used to quantify and investigate patterns of indi-
vidual differences. This is an important strength of the
growth curve method: condition, individual, and indi-
vidual · condition effects can all be examined in a single
set of analyses and the technique is powerful enough to
pull out patterns of variability in a relatively small num-
ber of participants (15) drawn from a relatively homog-
enous group (healthy, college-age adults). As a result,
this statistical technique is a very promising tool for
applying eye-tracking methods to studying larger indi-
vidual differences such as changes due to development
and aging and acquired and developmental language
disorders. We have demonstrated some first steps in
using growth curve analyses and computational model-
ing to address individual differences. We used growth
curve analysis to quantify and describe individual differ-
ences. We then examined whether variation in different
parameters in the TRACE model would lead to analo-
gous differences, with a particular focus on distinguish-
ing linguistic from decisional bases of individual
differences (e.g., the pattern of individual differences
we just analyzed was captured by manipulating a param-
eter governing phonological–lexical dynamics but not by
manipulating a decision-level parameter). At this point,
we simply wish to emphasize the power of the statistical
and computational modeling approach: growth curve
statistical modeling revealed aspects of the behavioral
data that were not accessible using previous approaches
to VWP data analysis, and computational modeling
using the TRACE model helped to evaluate possible
cognitive interpretations of the results and made further
predictions for behavioral testing.5
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General discussion

The visual world paradigm has proven to be a pow-
erful technique for investigating spoken language pro-
cessing from subphonemic details to sentence
processing, though the paradigm lacks standard and
appropriate statistical tools for analyzing time course
data. In this report we have described a statistical tech-
nique based on multilevel polynomial regression that is
specifically developed for analyzing change over time.
We have shown how this technique can be used to ana-
lyze typical visual world paradigm data and how it can
be used to examine individual differences. Combined
with computational modeling using the TRACE model
of speech perception, we have taken a first step towards
understanding individual differences in spoken word rec-
ognition in cognitive terms.

One possible criticism of using orthogonal polyno-
mials is that they are not well-suited to capturing the
asymptotic details in both tails of VWP fixation prob-
ability curves and that an alternative function would
be a better starting point. Scheepers, Keller, and
Lapata (2007), for example, advocate using the logis-
tic function. The logistic curve-fitting approach is very
much in the same spirit as our approach since it also
aims to capture the full time course of fixation prob-
ability. Both approaches have strengths and weak-
nesses. As with all statistical models, researchers will
need to make an informed decision about the appro-
priateness of the model for their situation. One major
advantage of the growth curve approach is that the
model of the average is the average of the individual
participant models. Put differently, there are easily
defined mathematical relations between the average
data pattern and the underlying probability distribu-
tion from which individual data patterns are (pre-
sumed to be) drawn. This property may seem
unremarkable to researchers who work primarily with
linear models; it is a core property of linear models.
But non-linear models, like the logistic, do not share
this property. Given a non-linear model, the average
data pattern is not indicative of the underlying prob-
ability distribution, regardless of whether one is aver-
aging across participants or trials. Paradoxically, this
implies that to the degree that the average data pat-
tern is fit by a logistic curve, the greater the assurance
that the individual data patterns were not logistic in
form themselves. Therefore, if one aggregates data
by averaging, some deep and awkward questions arise
about what the estimated parameters mean—what are
they estimating, if not the underlying probability dis-
tribution that generated the individual data patterns?
Of course, there is no rule that mandates averaging,
but the types of models at issue require aggregated
data, and averaging is a standard aggregation
method. In general, one needs to be able to specify
the linkages among the underlying distribution, the
individual (or finest grained data), and the aggregated
data.

The process of averaging, even in linear models, can
raise some legitimate concerns: what about a case where
two different patterns of individual data that give rise to
the same average data (e.g., one dataset with several
‘‘slow’’ participants and several ‘‘fast’’ participants vs.
one with much less variability between participants)?
GCA would distinguish these cases based on distribu-
tional differences in the level-2 individual participant
parameters. In contrast, on the logistic approach, it is
necessary to address individual and group levels sepa-
rately (e.g., Scheepers et al., 2007, fit full and subset
group average data, but not individual participant data)
because for logistic curves the model of the average data
is typically not the average of individual participant
models (i.e., logistic curves are not dynamically consis-
tent; Keats, 1983).

On the other hand, the logistic approach may pro-
vide better fits at the asymptotes of VWP data. The
polynomials in GCA do a good job of capturing the
general form of the curve within the analyzed time
window, but may produce strange behavior outside
of that range (e.g., an extended period with fixation
proportions at static levels). We suggest that the
asymptotes in these data are generally not where the
action is: often the asymptotes are artifacts of the
task. For example, curves start flat because partici-
pants are not looking at any objects before the trial
begins and it takes about 200 ms to plan and execute
an initial saccade. Since VWP trials are self-terminat-
ing and last different durations, an asymptotic right
tail can arise due to padding short trials to be the
same duration as long trials. In either case, since the
experimental focus is on time course bracketed by
the asymptotic ends of fixation curves, the asymptotes
themselves are of comparatively less interest than the
transitions.

Nonetheless, there may be cases where the tails are
important. For example, consider the schematic data
patterns shown in Fig. 10: the left panel shows a con-
stant advantage for one condition (vertical shift), the
right panel shows a faster time course of activation
for one condition (horizontal shift). Orthogonal poly-
nomial GCA would describe both of these patterns as
differences in the intercept term and fail to distinguish
between them (because the orthogonal polynomial
intercept corresponds to the average curve height). It
is important to note that in practice, such ambiguity
would be rare, as it requires an equal shift at both ends
of the curve (asymmetric shifts would affect the linear
term) of modest magnitude (due to the necessarily
asymptotic shape of the curves, large shifts change tra-
jectory curvature and would affect the quadratic term);
nonetheless, this is a weakness of GCA using orthogo-



Fig. 10. Schematic demonstration of data from two conditions that differ by a constant advantage (vertical shift, left panel) or by time
course of activation (horizontal shift, right panel).
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nal polynomials. There are a number of ways to
overcome this weakness. Perhaps the simplest is to
include fixations after target selection (e.g., fixations
back to a central cross), which would allow the qua-
dratic term to capture the crucial time course differ-
ences. In the resulting curves, a constant advantage
for one condition would still result in an effect on the
intercept, but a faster activation and decay profile
would be captured by the quadratic term. Another
approach would be to use natural polynomials, in
which case the vertical shift would still predict an inter-
cept difference and the horizontal shift would predict
effects on higher-order terms, though (as discussed
above) at the cost of losing independence of the coeffi-
cients. Another solution would be to use a logistic
function, as advocated by Scheepers et al. (2007), in
which case the vertical shift would predict an effect
on the y-intercept term and the horizontal shift would
predict an effect on the x-axis location of the central
inflection point (see Scheepers et al. for model details
and parameter interpretation). However, the logistic
approach also has weaknesses as described above (lack
of independence of terms and the need to model group
average data and individual participant data sepa-
rately). In general, model selection should be informed
by the hypotheses under investigation. GCA using
orthogonal polynomials is a robust and powerful statis-
tical tool that has many advantages, but it is not going
to be perfect for every analysis and researchers should
consider the strengths and weaknesses of different mod-
els in planning analyses of their data.

In summary, our approach makes two contributions
to understanding the time course of spoken language
processing tapped in the VWP. First, the statistical
approach provides sorely needed tools appropriate for
evaluating changes in fixation proportions over time.
Second, it provides a foundation for evaluating
between-participant variability in the visual world para-
digm. By combining a robust statistical approach to
change over time with systematic computational model-
ing, we provide an important step towards understand-
ing individual differences in a naturalistic task with
low memory and task demands, which may provide a
powerful means of investigating theoretical questions
and language impairments.
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Appendix A

Step-by-step instructions for GCA

1. Read in data.
2. Create orthogonal time vectors of appropriate size and add

them to the data structure.
3. Fit base model that contains all effects except those under

investigation.
4. Gradually (individually) add critical effects, noting the

change in model fit (�2LL) when each term is added.



Table A1
Example condition coding and residual values for participant 1

Participant Condition Residual

Frequency Cohort density Neighborhood density Intercept (f01) Linear (f11)

1 1 1 1 Z01 Z11

1 1 1 0 Z02 Z12

1 1 0 1 Z03 Z13

1 1 0 0 Z04 Z14

1 0 1 1 Z05 Z15

1 0 1 0 Z06 Z16

1 0 0 1 Z07 Z17

1 0 0 0 Z08 Z18

Each condition is represented as 1 (high) or 0 (low).
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5. Evaluate significance of changes in �2LL and differences in
parameter estimates as appropriate.

Averaging residuals for individual by condition effects

To illustrate how we calculated the average residuals for the
individual by condition effects, we present Table A1. The table
shows the eight records [2 (Frequency) · 2 (Cohort density) · 2
(Neighborhood density)] for a single hypothetical individual.
Consider as an example of the computations, the cohort density
effects on the intercept. To obtain these values, we averaged
over the levels of frequency using neighborhood density as a
repeating factor. The four resulting terms were thus computed
as: M(Z01,Z02), M(Z03,Z04), M(Z05,Z06), M(Z07,Z08). The
resulting means capture the magnitude of the residual terms
for this individual for high and low cohort density (separately
for levels of frequency). The frequency residuals were calculated
analogously (i.e., by averaging over levels of cohort density):
M(Z01,Z03), M(Z02,Z04), M(Z05, Z07), M(Z06,Z08).
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