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Abstract

In a seminal 1977 article, Rumelhart argued that perception required the simultaneous use of

multiple sources of information, allowing perceivers to optimally interpret sensory information at

many levels of representation in real time as information arrives. Building on Rumelhart’s argu-

ments, we present the Interactive Activation hypothesis—the idea that the mechanism used in

perception and comprehension to achieve these feats exploits an interactive activation process

implemented through the bidirectional propagation of activation among simple processing units.

We then examine the interactive activation model of letter and word perception and the TRACE

model of speech perception, as early attempts to explore this hypothesis, and review the experi-

mental evidence relevant to their assumptions and predictions. We consider how well these models

address the computational challenge posed by the problem of perception, and we consider how

consistent they are with evidence from behavioral experiments. We examine empirical and theo-

retical controversies surrounding the idea of interactive processing, including a controversy that

swirls around the relationship between interactive computation and optimal Bayesian inference.

Some of the implementation details of early versions of interactive activation models caused devi-

ation from optimality and from aspects of human performance data. More recent versions of these

models, however, overcome these deficiencies. Among these is a model called the multinomial

interactive activation model, which explicitly links interactive activation and Bayesian computa-

tions. We also review evidence from neurophysiological and neuroimaging studies supporting the

view that interactive processing is a characteristic of the perceptual processing machinery in the

brain. In sum, we argue that a computational analysis, as well as behavioral and neuroscience evi-

dence, all support the Interactive Activation hypothesis. The evidence suggests that contemporary
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versions of models based on the idea of interactive activation continue to provide a basis for

efforts to achieve a fuller understanding of the process of perception.

Keywords: Perception; Interactive activation; Parallel distributed processing; Connectionist

models; Optimal perceptual inference; Neural networks

1. Introduction

One of the foundational concepts in the parallel distributed processing (PDP) frame-

work is interactive activation. Interactive activation is synonymous with the concept of

mutual constraint satisfaction: The idea is that, as a general principle, perceptual, lin-

guistic, and other mental representations arise through the bidirectional propagation of

activation among simple, neuron-like processing units. The concept was central to the

interactive activation (IA) model of letter and word perception (McClelland & Rumel-

hart, 1981; Rumelhart & McClelland, 1981, 1982) and the TRACE model of speech

perception (McClelland & Elman, 1986). In these models, the focus was on bidirec-

tional interactions between units standing for wholes and parts, such as words and let-

ters or phonemes; letters and letter features; and phonemes and their features. In these

models, individual neuron-like processing units were assigned to represent explicitly

enumerable perceptual units such as words, letters, phonemes, and features. The pro-

cessing units might be viewed as standing for populations of neurons dedicated to the

corresponding cognitive units (Bowers, 2009), but we hold a different view. In line

with the proposal of Smolensky (1986), the processing units in the model stand for

informational states encoded as alternative patterns of activity over populations of neu-

rons each of which participates in the representation of many different items (Hinton,

McClelland, & Rumelhart, 1986; Plaut & McClelland, 2010). IA models track the time

evolution and content of such states, a useful projection of the full complexity of the

underlying neural activity into what Smolensky called a conceptual representational

space, where their relationship with overt behavior such as letter, phoneme, or word

identification is easier to track.

As detailed below, the empirical motivation for interactive activation models is the

observation that, in experiment after experiment, the identification or interpretation of

any element or aspect of a visual, auditory, or other input is influenced by the identity

and interpretation of every other element or aspect of the input. Correspondingly, there

is a motivation at the level of a theory of optimal perceptual interpretation: In general,

direct sensory evidence for the interpretation of an input at any level of perceptual

description can be inconclusive when considered in isolation, and the most likely inter-

pretation of each element can only be determined when the interpretation of all ele-

ments and many sources of evidence are considered together. Indeed, a single coherent

interpretation of all elements may well be strongly determined by the totality of the

evidence, even though all of the individual elements of evidence are highly ambiguous

(Fig. 1a).
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Beyond the domain of perception and comprehension, multiple simultaneous constraints

apply to selection of aspects of contextually appropriate actions and reconstruction of

memories, as well as many other aspects of cognition. Likewise, goals and task demands

provide additional constraints that are integrated into perception, interpretation, remem-

bering, and action, thus influencing, and often being influenced by, the outcome of pro-

cessing. Chapter 1 of the PDP volumes (McClelland, Rumelhart, & Hinton, 1986) argued

that these same considerations arise in all other areas of cognitive processing, including

action selection, problem solving, and memory.

The idea that all aspects of perception and cognition involve parallel distributed pro-

cessing in this way is an alternative to modular approaches to perception and cognition.

Interactive processing allows for the possibility that specific neurons or neural populations

in particular brain areas may be specialized to represent one or another type of informa-

tion, so a certain kind of compartmentalization of information remains. In order, however,

for all sources of information to simultaneously constrain all others, any outcome in

which a particular ensemble of such neurons is active is thought to be the consequence of

processing that is distributed across neural populations in multiple brain areas, including

neurons that represent information of many different types. Thus, for example, while

there can be brain regions dedicated to the representation of visual, semantic, auditory,

and articulatory aspects of a visually presented word, the activations of neurons in all of

the participating brain regions are taken to be mutually interdependent within the interac-

tive activation/mutual constraint satisfaction framework.

Fig. 1. Top: A Dalmatian dog emerges from an assemblage of individually uninterpretable blotches. From

James (1965). Copyright © Ronald C. James, reprinted with permission. Bottom: The hand-written words

“went” in the first sentence and “event” in the second are identical, but they are perceived differently in the

two different contexts. From fig. 3, p. 579 of Rumelhart (1977). Copyright © Taylor and Francis Group, rep-

rinted with permission.
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1.1. Precursors to interactive activation models

The motivation for an interactive approach to perception and comprehension was laid

out in a paper by Rumelhart (1977). Rumelhart reviewed existing data going back to

the 19th century on the role of context in letter, phoneme, and word perception

(Fig. 1b), and on the use of a range of sources of information in resolving ambiguities

in syntactic and semantic interpretation of both spoken and written words and sen-

tences. He took the goal of perception and comprehension to be to find a joint interpre-

tation of an input at many different levels of representation, through a mutual

constraint satisfaction process guided by knowledge of the prior probabilities of alterna-

tive hypotheses and of conditional probabilistic relations between these alternatives.

Rumelhart went on to envision how a process of settling on such an interpretation

might take place. Drawing inspiration from Hearsay (Reddy, Erman, Fennell, & Neely,

1973), an early artificial intelligence model of speech perception, he envisioned a data

structure called a “message center” or “blackboard,” where estimates of the probabili-

ties of possible elements of the interpretation of an input could be “chalked in” for

inspection and adjustment by specialized experts, each working in parallel on the con-

tents of the blackboard. For example, for the case of written input, the estimate of the

probability that the letter in a particular position in a word might be the letter A might

be increased by a lexical expert that used information about a preceding C and a subse-

quent T along with lexical information that C, followed by A and T, spells the familiar

word CAT. The lexical-level CAT hypothesis might be further strengthened if the par-

ticipant has just viewed a picture containing a drawing of a cat. At the feature, letter,

and word levels, the model drew on an earlier model by Rumelhart and Siple (1974)

that relied on knowledge of word and letter probabilities and the conditional probabili-

ties of letters given words to account for data on the identification of letters in displays

of three-letter sequences.

2. The computational problem addressed by interactive activation models

The arguments laid out by Rumelhart (1977) support the following statement of the

computational challenge faced in perception and language comprehension:

Search for the most probable interpretation. Perception and language under-

standing are the process of seeking the most probable interpretation of a written

or spoken input at many different levels of representation. An interpretation,

for example, of a written or spoken linguistic expression represents the visual

or auditory features present; the letters or speech sounds; the words, phrases,

and sentences; and the meaning and syntactic structure of these items. The goal

of the process is to find the interpretation that has the highest probability

overall.
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Exploitation of prior knowledge and context. Because of the ubiquity of ambiguity

and noise, maximizing the probability of finding the correct interpretation of any

given aspect of the perceptual input depends on exploitation of prior knowledge and

information from context, including adjacent elements in the expression itself, prior

input, and input from other domains such as accompanying visual information.

Although Rumelhart (1977) did not stress it, we add the following important real-time

constraint on a model of perception and comprehension:

Real-time processing constraint. Perception and comprehension must deliver

results as quickly as possible, allowing information of all different types to influ-

ence interpretation of information of all other types as it becomes available.

Our inclusion of this constraint in the formulation of the problem of perceptual infer-

ence differs from typical computational-level formulations (Feldman, Griffiths, & Mrogan,

2009; Marr, 1982), in which only inputs and outcomes are considered, without consider-

ation of the time or processing steps required to compute the outcome. Clearly, though,

time is precious, and in a dynamic world, failure to comprehend (and act) quickly can lead

to missed opportunity and sometimes, catastrophe. Thus, achieving results as quickly as

possible in real time is part of the computational-level challenge facing the perceptual sys-

tem. Researchers coming from a computational-level starting point have begun to consider

the importance of this issue (Norris, 2013; Vul, Goodman, Griffiths, & Tenenbaum, 2014).

2.1. Human perception and comprehension as an approximation to optimal perceptual
inference in real time

The above statements characterize the computational problem a system of perception

and comprehension must solve. Our next proposition states that human perception and

comprehension mechanisms are organized to address these computational considerations:

Humans approximate optimal real-time perceptual inference. Human perceivers

approximate the patterns of behavior we would expect from an optimal system of

perception and comprehension, exploiting context and prior knowledge to guide

perception and comprehension and reflecting the influence of all sources of exter-

nal input on all aspects of the interpretation as the input becomes available in

real time.

There are limits on speed and accuracy that are imposed by the characteristics of neu-

ral hardware, affecting the extent to which humans can achieve a close approximation to

optimality. We also note that experience is required for optimization, so that speed and

accuracy both increase gradually with practice and exposure. The consequences of experi-

ence involve learning about the statistical structure of the perceptual world, tuning of

perceptual and other cognitive systems to exploit this structure, and allocation of brain

J. L. McClelland et al. / Cognitive Science (2014) 5



resources (neurons and synapses) to support performance. In the present article, we focus

on perception and comprehension by skilled adults perceiving and comprehending spoken

and written input from their native language, assuming that experience-dependent optimi-

zation has already occurred.

2.2 The interactive activation hypothesis

The statement of the problem and the characterization of human performance given

above appear to be widely accepted, but several alternative approaches have been taken to

characterizing the mechanisms that allow human perceivers to succeed in exploiting con-

text and prior knowledge effectively. In this article, we consider the following hypothesis:

Interactive activation hypothesis. Implementation of perceptual and other cogni-

tive processes within bidirectionally connected neural networks in the brain

provides the mechanism that addresses the key computational challenges facing

perceptual systems, and it gives rise to the approximate conformity of human per-

formance to optimal perceptual inference in real time.

In what follows, we discuss the history of research on interactive models in perception.

We examine the early IA and TRACE models and the experimental evidence relevant to

their fundamental assumptions. We consider how well they address the computational

challenges specified above, and we consider how consistent they are with evidence from

behavioral experiments. We examine empirical and theoretical controversies surrounding

the idea of interactive processing, including a controversy that has swirled around the

relationship between interactive computation and optimal Bayesian inference. We also

review evidence from neurophysiological and neuroimaging studies of the neural basis of

perception. To anticipate our conclusions: Computational analysis as well as behavioral

and neuroscience evidence are all consistent with the Interactive Activation hypothesis.

Although there have been and will likely remain those who advocate for alternative

approaches, the evidence suggests to us that contemporary versions of models based on

these ideas have considerable merit. At the end of the article, we revisit this conclusion

and consider ways in which interactive approaches may develop in the future.

3. The interactive activation and TRACE models

Testing the IA hypothesis requires the development of explicit models that embody its

assumptions, as well as the analysis of these models to understand their properties and to

examine the extent of their ability to account for patterns in human behavior. The Interac-

tive Activation model of letter and word perception (McClelland & Rumelhart, 1981;

Rumelhart & McClelland, 1981, 1982), and its offspring, the TRACE Model of speech

perception (McClelland & Elman, 1986), represented initial steps in such a research

program, focusing primarily on modeling patterns in data.
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The IA model of letter and word perception addresses the perception of letters pre-

sented in one of four display locations, either alone or together with neighboring letters

in the other locations. Position-specific pools of neuron-like processing units are posited

at feature and letter levels, and a word level spans the array of input positions (Fig. 2a).

There are bidirectional excitatory connections between mutually consistent units in adja-

cent levels and bidirectional inhibitory connections among units within each pool. Before

presentation of a stimulus, all units’ activation values are set to a resting level slightly

below 0. External input, once presented, drives feature units, which in turn activate

consistent letter units and inhibit inconsistent letter units.1 Letter units in turn activate

(a) (b)

Fig. 2. (a) The interactive activation model, indicating the pools of units corresponding to words, letters in

each of four positions, and features in the same positions. Excitatory connections for the word TIME and the

letters and features of this word are shown. Units within each pool are mutually inhibitory, though the inhi-

bitory connections are not drawn in. At the feature level, units are organized into pools consisting of two

units, one for the presence and one the absence of each possible feature. Reprinted from fig. 6, p. 14 of McC-

lelland (2013). Copyright ©James L. McClelland, reprinted with permission. (b) The time course of activation

of letter units in the fourth position and word units in the original version of the interactive activation model,

after presentation of the display shown below the figure. The visible segments in the last position are equally

consistent with the letters K and R, and inconsistent with other letters. At the word level, only one known

word, WORK, is consistent with the active letters in each of the four positions. This word feeds back to sup-

port the unit for K, which then dominates R in the fourth position. Reprinted from fig. 8, p. 23 of McClelland

et al. (1986). Copyright © MIT Press, reprinted with permission.
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consistent word units which compete with each other and also send feedback to support

letters consistent with possible words. An illustration of this process, as it applies to the

ambiguous input indicated in Fig. 2b, shows the time course of activation, demonstrating

how it can find the contextually most likely interpretation within a few processing cycles.

Although the featural input in the fourth position is equally consistent with R or K, only

K makes a word (WORK) with the context letters. Due to bottom-up support from active

letters in all four positions, this word becomes more active than any other word; it sup-

presses other competing word alternatives and provides top-down support for K, which

then suppresses R via competition, leading to a state in which there is a consistent inter-

pretation of the input at both the letter and word levels.

Details of the interactive activation process. We describe the details of the activation pro-

cess as it was conceived in the IA and TRACE models. These details will be relevant later

to our discussion of the relationship between interactive activation and optimal inference.

The activation process, as originally formulated (adapting proposals of Grossberg, 1978),

assigned continuously varying activation values to units for letters and words. The process

is in principle viewed as a completely continuous process, approximated in simulations as

a series of fine-grained time steps. During each time step, for each unit, its net input is first
calculated. This is the sum, over all units projecting to it, of the activation of the sending

unit times the value of the incoming connection weight from that unit, plus any direct

external input to the unit:

neti ¼
X

½aj�þwij þ ei

The strengths of excitatory and inhibitory weights were determined by separate param-

eters for feature-to-letter, letter-to-word, word-to-letter, and within-layer influences. The

notation [aj]
+ indicates that a unit’s activation value is only propagated if greater than 0.

Once the net input to each unit has been established, activations are adjusted as follows:

If ðneti� 0Þ : Dai ¼ netið1� aiÞ � dðai � rÞ
otherwise : Dai ¼ netiðai � mÞ � dðai � rÞ

These equations implement a process in which a positive net input pushes activation

up toward a maximum value of 1, while a negative net input pushes activation down

toward a minimum (m), usually set to �.2 or �.3. The rightmost term in each equation

implements a restoring force sometimes thought of as corresponding to a decay or leak-

age process that tends to pull activation values toward their resting level (r); the parame-

ter d represents the strength of this tendency.

Processing in the model is completely deterministic. To address human performance in

perception experiments, where performance is probabilistic, predicted response probabili-

ties are derived by applying the Luce choice rule to a running average of the resulting

activation values, so that the probability of choosing alternative i is given by:
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pðriÞ ¼ eg�ai
�X

i0
eg�ai0

For example, the probability of choosing the letter K as the identification response for

the letter in the fourth position in the display in Fig. 2a would be calculated by setting i
to be the index of the unit corresponding to the letter K in the fourth position. The index

i0 runs over all the letters in the same position, including the one indexed by i, and g is a

scaling parameter. The quantity �ai corresponds to the running average activation of the

unit for the letter in question at the time when the network is interrogated. For most of

the experiments modeled in McClelland and Rumelhart (1981), this time was taken to be

the time post-stimulus onset that resulted in highest possible probability of correct

responding.

The TRACE model extends the ideas from the IA model to the processing of a stream of

speech by postulating a much larger number of position-specific feature and letter unit

arrays, as well as corresponding banks of position-aligned word units, so that there is a unit

for every feature and phoneme at each position, and a unit for every word starting at every

position. As spoken input arrives sequentially in real time, each successive time sample of

the spoken input is directed to the next input position. In this way, the same bidirectional

activation process as captured in the IA model of letter perception could be applied to the

processing of spoken inputs corresponding to one or a few words. The architecture allowed

phoneme-level and word-level constraints to be applied to sequences of input samples

regardless of where in the input stream these samples occurred. The structure of the TRACE

model should not be viewed as a literal claim about the neural mechanism. Instead, it should

be seen as a higher-level characterization capturing the relative rather than absolute con-

straints between phoneme- and word-level information: If there is a /k/ at a particular time,

it supports the word “cat” starting in the same time, and the word “ticket” starting two pho-

nemes earlier (among many other possibilities), and these constraints are captured in the

connections between units for the corresponding items in the corresponding positions.2

Activation in this array of units formed a dynamic memory trace of the results of processing

a spoken input, hence the name of the model. The architecture was inspired by the earlier

concept of the blackboard as discussed by Rumelhart (1977), and a model developed at

about the same time (McClelland, 1985, 1986) explored how neural hardware might imple-

ment these computations without the reduplication of units and connections.

4. Behavioral evidence

4.1. Empirical foci of the IA and TRACE models

The IA and TRACE models targeted letter and phoneme perception, addressing a large

body of relevant data illustrating effects of word context on recognition of letters and

speech sounds. Much of the early behavioral evidence can be summarized as explorations
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of word superiority effects: Letters are recognized more accurately when presented within

words than when presented in isolation or in random sequences of letters (e.g., Reicher,

1969). The models also addressed the ubiquitous finding that ambiguous visual and

speech inputs are likely to be identified as letters or phonemes consistent with surround-

ing lexical context (e.g., Ganong, 1980; Massaro, 1979). For example, Ganong (1980)

showed that an ambiguous sound between /k/ and /g/ was more likely to be identified as

/k/ in an “_iss” context (where it fits to form the word “kiss”) and as /g/ in an “_ift” con-

text (where it fits to form the word “gift”). The advantage for letters in words also

extended to letters in pronounceable, word-like pseudowords (such as LEAT or TOVE,

McClelland & Johnston, 1977). The IA model of word perception provided a novel

account of the mechanism by which letters in pseudowords like LEAT were perceived

more accurately than letters in unword-like non-words (e.g. LTAE) or single letters pre-

sented without context; in the model, the pseudoword advantage occurred through the

partial activation of units for words sharing several letters with the presented input. Such

items are called neighbors of the given input. These word units then fed back support to

the units for the constituent letters, many of which are partially supported by activations

of several different words (Fig. 3). Newman, Sawusch, and Luce (1997) demonstrated

neighborhood effects in identification of ambiguous speech segments, consistent with this

account. The IA model predicted that letters in unpronounceable strings that nevertheless

had many word “neighbors” (e.g., the “L” in SLNT) would show as much facilitation as

letters in comparable pronounceable strings (SLET), and an experiment reported in

Rumelhart and McClelland (1982) confirmed this prediction.

Fig. 3. Activations at the word level produced by CAVE and MAVE in the interactive activation model.

Activations of all units whose activation exceeds 0 at any time during processing are shown. Activation

traces are offset spatially with those reaching higher maximal activations starting behind and to the right. In

the case of MAVE, several words contribute top-down support to the presented letter in each of the four-

letter positions. From fig. 13, p. 396 and fig. 9, p. 393 of McClelland and Rumelhart (1981). Copyright ©
American Psychological Association. Reprinted with permission.
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The bidirectional interactive processing in the IA and TRACE models predicts that

context effects can occur for contextual elements that come after a target input element,

as well as for elements that come before the target. This prediction was tested and con-

firmed in experiments that separately manipulated the duration of each context letter and

examined its effect on the recognition of target letters in each letter position (Rumelhart

& McClelland, 1982). In general, all context letters influence accuracy of perception of

each target letter. Similarly, lexical effects on phoneme recognition occur for word-initial

as well as embedded or word-final phonemes (Ganong, 1980; Warren, 1970), and the

effects extend to contextual information in subsequent words in some studies (Sherman,

1971; Warren & Warren, 1971). Of course, if perceivers in a phoneme identification task

are required to respond too soon after an ambiguous segment, subsequent context has lit-

tle effect (Fox, 1984), and this was captured in simulations using the TRACE model. A

wide range of additional phenomena in speech perception, including lexically based seg-

mentation of a stream of spoken sounds into words and the perceptual magnet effect

(Kuhl, 1991), were also addressed by the TRACE model.

Evidence of human conformity to the real-time processing constraint. One of the moti-

vating phenomena leading to the development of the TRACE model was evidence sup-

porting the view that word identification occurs in real time during speech perception.

Marslen-Wilson and colleagues were the first to focus on this point, showing that identifi-

cation occurs very shortly after a spoken input becomes uniquely consistent with a single

possible word (Marslen-Wilson & Welsh, 1978). A large body of subsequent work exam-

ining eye movements during spoken word-to-picture matching tasks further supported the

general principle that context and stimulus information mutually constrain processing in

real time. Several of these studies include both non-linguistic visual input as well as spo-

ken auditory input, as envisioned in the 1977 paper by Rumelhart. The initial experiments

using this method showed that visual context influenced the immediate interpretation of a

syntactically ambiguous prepositional phrase (Chambers, Tanenhaus, & Magnuson, 2004;

Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 1995). Subsequent studies also

showed that syntactic and semantic expectations can also constrain which lexical candi-

dates are considered. For example, Dahan and Tanenhaus (2004) showed that participants

rule out possible target objects upon hearing a verb (such as “climb”) that rules out some

of the objects as potential objects of the action named by the verb (e.g., a watch). Criti-

cally, these contextual influences became evident very soon after the constraining infor-

mation was presented (Dahan & Tanenhaus, 2004; Magnuson, Tanenhaus, & Aslin, 2008)

and were continuously updated as new information became available. This was demon-

strated particularly clearly by Allopenna, Magnuson, and Tanenhaus (1998) in a study

that showed that about 200 ms after word onset—the minimum required to plan and exe-

cute an eye movement—listeners were already more likely to fixate objects whose names

matched the initial consonant and vowel of the word. Furthermore, their results showed

that word candidates that did not match an input’s onset could still become activated if

supported by enough subsequent phonological input, consistent with the idea of a set of

candidates whose activations are continuously updated in light of ongoing input. Many of
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these papers simulated their findings using the TRACE model or simplified models based

on similar assumptions (Spivey & Tanenhaus, 1998).

4.2. Evidence of the generality of context effects

Word context effects on recognition of letters and phonemes have served as a major

focus for research on interactive processing, but the principle is very general and recurs

across many different domains of perception and cognition. For example, just as in word

recognition, there is a tendency for phonological errors in speech production to result in

existing words rather than non-words, and such effects are well explained by interactive

models of speech production (Dell, 1986; see also Dell, Schwartz, Martin, Saffran, &

Gagnon, 1997; Rapp & Goldrick, 2000).

Interactive processing also plays an important role in visual object perception. Just as

in the word advantage effects, perception of an ambiguous color can be biased by object

context (Hansen, Olkkonen, Walter, & Gegenfurtner, 2006; Kubat, Mirman, & Roy,

2009). For example, an ambiguous color halfway between yellow and orange is perceived

as more yellow in the context of a school bus and as more orange in the context of a car-

rot. Furthermore, paralleling a result from Elman and McClelland (1988) discussed

below, Mitterer and de Ruiter (2008) showed that object-context feedback can recalibrate

color categories. The well-known illusory contours phenomenon in Kanizsa figures (Kan-

izsa, 1979; Fig. 4) demonstrates that a simple figure context can even induce the percep-

tion of contours that are completely absent from the input, as expected from interactive

activation.

Fig. 4. Illusory contours in the Kanizsa triangle. Image source: Kanizsa triangle, Wikimedia Commons,

http://en.wikipedia.org/wiki/File:Kanizsa_triangle.svg. Copyright © Wikipedia Commons. Reprinted under the

GNU Free Documentation License.
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Moving to higher level phenomena, it has been clear for many years that context

affects the resolution of lexical ambiguity, as Rumelhart (1977) predicted. There are mod-

els of such effects that restrict context effects to a post-access selection process (Swinney,

1979), but interactive models predict that if the context is sufficiently constraining, then

it could constrain which meanings of an ambiguous word are initially activated (e.g.,

Seidenberg, Tanenhaus, Leiman, & Bienkowski, 1982) and even cause pre-activation

before the input is presented (McClelland, 1987). Eye-tracking studies have revealed such

anticipatory effects in language processing in adults (e.g., Altmann & Kamide, 1999;

Magnuson et al., 2008; see also the Dahan & Tanenhaus, 2004 study mentioned above)

as well as infants (e.g., McMurray & Aslin, 2004). Electrophysiological scalp recordings

(ERP) also suggest that words can be pre-activated by sentence contexts (van den Brink,

Brown, & Hagoort, 2001; DeLong, Urbach, & Kutas, 2005).

The study of context effects has focused on how perception of elements such as letters

or phonemes (or edges or colors) is affected by their immediate context (e.g., words or

objects). However, processing is also affected by other contextual factors, including task

instructions and relative probability of different types of stimuli. For example, lexical

context effects are reduced when the proportion of non-words in a block of trials in a

perceptual experiment is relatively high. Specifically, if the non-word proportion is high,

the speed advantage for recognition of phonemes in words compared to non-words is

reduced (Mirman, McClelland, Holt, & Magnuson, 2008), the word bias in speech errors

is reduced (Hartsuiker, Corley, & Martensen, 2005), the short-term memory advantage

for words over non-words is reduced (Jefferies, Frankish, & Ralph, 2006), and there is an

increase in regularization errors in reading words that have inconsistent letter-sound map-

pings (e.g., reading “pint” to rhyme with “mint”; Monsell, Patterson, Graham, Hughes, &

Milroy, 1992). These results can be interpreted as reflecting reduced activation of lexical

(or possibly semantic) representations so that representations of words are less active and

consequently have a smaller feedback effect (for implementations of these effects within

TRACE, see Mirman et al., 2008).

The modulation of processing through attention can be implemented in networks of

bidirectionally connected processing units—that is, interactive activation networks. One

example of such a model is the model of attentional modulation of processing in the

Ericksen flanker task (Cohen, Servan-Schreiber, & McClelland, 1992). In this model,

units standing for different spatial locations are bidirectionally connected with units for

features in these locations, and these units are, in turn, bidirectionally connected with

position-independent units of the alternative possible target letter identities. Directing

attention to a location is thought to arise from top-down activation of the unit standing

for that spatial location; this enhances the activation of units for features in the corre-

sponding position, giving them an eventual upper hand in subsequent processing, but

allowing activations from inconsistent flankers nevertheless to retard identification of the

item in the target location (as is observed in experiments, for example, Gratton, Coles,

Sirevaag, Eriksen, & Donchin, 1988). Although some implementations of the Cohen et al.

model have simplified the architecture such that not all connections are bidirectional, we

take it as a given that attention to locations and stimulus features involves a bidirectional
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propagation of activation such that salient inputs, as well as goals and task demands, can

participate in determining the focus of attention (Phaf, Van der Heijden, & Hudson,

1990). Furthermore, a recent model of interactive engagement between dorsal (action)

and ventral (object) processing systems illustrates how interactive processing can facili-

tate the simultaneous identification of two or more objects present in a display at the

same time (Henderson & McClelland, 2011).

Finally, we note that interactive activation processes may also play an important role

in memory (Kumaran & McClelland, 2012; McClelland, 1981). A cue (such as an indi-

vidual’s name) can activate a representation of the item in memory, and this in turn can

activate known features of the item, which then, through recurrence, activate other similar

items. These items then in their turn can fill in additional features that are then attributed

to the cued item. This use of interactivity extends similarity-based generalization models

to cases in which relevant items in memory do not overlap with the cue (the individual’s

name may be unique) but do overlap on other dimensions that are brought into the

computation via recurrent, interactive computation.

5. Interactive processing and optimal perceptual inference

While the above indicates some of the empirical support for the IA and TRACE mod-

els and demonstrates that the applicability of the principle of interactive activation

extends beyond the domain of perception, it does not explicitly address the question of

the relationship between the IA model and optimal perceptual inference. The topic has

been the source of a heated critique in the literature on visual and auditory context effects

(Massaro, 1989; Massaro & Cohen, 1991; Norris & McQueen, 2008; Norris, McQueen,

& Cutler, 2000). The papers just cited argue that interactive processing will distort per-

ception away from the pattern that is both seen in behavioral data and expected if infor-

mation integration is consistent with principles of Bayesian inference, and that interactive

activation causes undue contextual influence, producing, for example, inappropriate

“hallucination” of lexically consistent phonemes.

It is ironic that the IA hypothesis would face such critiques, given that Rumelhart’s

early ideas about context effects on perception (Rumelhart, 1977; Rumelhart & Siple,

1974) were explicitly formulated in terms of probabilistic, Bayesian inference. Further-

more, the “hallucinatory” perception of contextually consistent phonemes observed in the

models is, for us, exactly what the model should produce, both from the point of view of

optimal performance in natural contexts and from the point of view of accounting for the

findings in human perception. Consider what happens when a brief noise burst occurs

coincident with the production of a phoneme in a spoken sentence. Listeners are likely to

perceive (perceptually restore) the correct speech sound in such cases, even when the

noise replaces the sound rather than being played over it (Samuel, 1981; Warren, 1970).

The perception of the phoneme is in some sense a hallucination, but in a natural context,

the inference that the speaker has produced the contextually appropriate sound is far more

likely to be correct that the inference that he suspended his speech for the exact duration
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of the noise burst. In general, exploiting context to determine what we hear is more likely

to lead us to hear what was really said, except in experiments where natural probabilistic

contingencies can be broken.

It is true, however, that in developing the interactive activation model, Rumelhart and

McClelland (1981, 1982) and McClelland and Rumelhart (1981) gave no explicit consid-

eration to a probabilistic formulation of the problem of perception per se, drawing instead

on the non-probabilistic, neurally inspired processing models proposed by Grossberg

(1978, 1980) without considering whether this formulation corresponded exactly to opti-

mal probabilistic inference. In retrospect, this appears to have led to unfortunate misun-

derstandings and needless controversies that we hope to put to rest in the present article.

Specifically, subsequent research on interactive activation models supports two key

points:

1. The IA and TRACE models, in their original formulation, did not provide an exact

implementation of a principled Bayesian computation; indeed, the initial formulation

of these models did distort these computations, in ways that deviate both from opti-

mality and from human data.

2. However, variants of the models that retain their essential interactive character are

consistent with Bayesian principles and can capture data that were problematic for

the original formulation.

Regarding point (1), flaws in the original IA and TRACE models are discussed in

McClelland (1991). There, it was observed that the activation assumptions of the model

together with the assumptions about the translation of these activations into response

probabilities produced patterns of choice responses that deviated from Bayesian probabi-

listic models and from human choice responding. These deviations occurred even in the

absence of any interactivity in processing: That is, they occurred even when two sources

of bottom-up information were combined to determine the activation of units standing for

possible choice alternatives. Thus, the shortcomings of the original model may not have

been a consequence of interactivity per se.

Here, we consider point (2) above in more detail. Specifically, we describe how a vari-

ant of the IA model called the multinomial interactive activation (MIA) model (Khaitan

& McClelland, 2010) operates according to Bayesian principles of perceptual inference,

considering the case of a display containing a sequence of four letters, as in most of the

experiments modeled by the original IA model. A fuller treatment of the probabilistic

principles and their relationship with computations in artificial networks is provided in

McClelland (2013), and that article should be consulted by those interested in the details

behind the briefer presentation here.

The MIA model draws heavily on insights brought into research on artificial neural

networks by Hinton and Sejnowski in the form of the Boltzman Machine, first presented
in a conference proceedings paper describing how such a machine could perform optimal

perceptual inference (Hinton & Sejnowski, 1983), and subsequently described in the PDP

volumes (Hinton & Sejnowski, 1986). We begin by describing the relevant ideas from

the original Boltzmann machine.
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5.1. States, their goodness, and their probability in the Boltzmann machine

In Boltzmann machines, units take on binary activation values (0 or 1). Units (which

we index with the subscripts i and j) are thought of as corresponding to perceptual predi-

cates about a sensory input (e.g., the input contains a particular line segment at a particu-

lar location, or it signals the presence of a particular object at some location). A

consequence of using binary activation values is that it makes it relatively easy to con-

sider, not only unit-by-unit probabilities but also the probability of different overall states

of the network. Each state Sp corresponds to a specific pattern of [0, 1] values over all of

the units, and each state has a Goodness Gp, corresponding to how well the state satisfies

the graded constraints encoded in the connection weights (wij) among active units (ai and
aj) and the bias terms associated with the units (bi). Weights can be thought of as encod-

ing probabilistic constraints between pairs of predicates, and biases can be thought of as

encoding prior probabilities of individual predicates, in ways we will make precise for

the MIA model below. The goodness of a state is defined as

Gp ¼
X

i[ j
wijaiaj þ

X
i

aibi

The subscripts i and j run over all units in the network, and the notation i > j simply

indicates that the connection between a pair of units, which is assumed to be symmetric

(wij = wji) is only counted once in measuring goodness. The goodness is greater when the

bias terms on active units are more positive and when the weights between active units

are more positive.

When performing perceptual inference in a Boltzmann machine, some of the units may

be forced or clamped into specified 0 or 1 values, corresponding to a sensory input pat-

tern, while the activation values of the remaining units are set by a probabilistic updating

process. The resulting states of these unclamped units are thought of as a possible inter-

pretation of the sensory input. In the original Boltzmann machine, this updating process

consisted of a sequence of updates, each of which involved selecting an unclamped unit

at random. Indexing this unit as unit i, we then set its activation depending on its net

input, neti ¼
P

j ajwij þ bi, where j runs over units with connections to unit i. Once the

net input is computed, the units’ activation is set to 1 with probability

pi ¼ 1

1þ e�neti=T

or to 0 with probability 1-pi. T is a parameter called temperature, determining how

strongly the activation is constrained by the unit’s net input.

If this process is allowed to iterate for a sufficient number of updates, the probability

that the network will be in any particular state Sp is equal to the exponential function of

the goodness of the state scaled by the temperature, divided by the sum of corresponding

quantities for all possible states (indexed by p0), including state p:
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pðSpÞ ¼ eGp=TP
p0
eGp0=T

Here, a possible state is any state in which all the clamped units have their clamped

values; each such state is one of the possible patterns of binary activation values over all

of the remaining, unclamped units in the network. Since the sum over all the states in the

denominator is the same no matter which state we are considering, we can express this

relationship by saying that the probability of a state is proportional to the exponential

function of the goodness of the state scaled by the temperature:

pðSpÞ / eGp=T :

5.2. Generative model of the knowledge embodied in the IA model

The multinominal interactive activation model encodes specific probabilistic con-

straints in the biases and connections among units in a slight variant of the Boltzmann

machine. Our next step is to define the probabilistic knowledge that we will be encod-

ing in the network. We adopt a specific hypothetical formulation of the probabilistic

knowledge that might underlie a perceiver’s (implicit) beliefs about the process that

might produce the arrays of visual input features in a letter perception experiment. This

knowledge has the form of a probabilistic generative model. The concept of a genera-

tive model is a useful tool for characterizing the probabilistic structure of an environ-

ment and of the information reaching the sensory surface from the environment, and

also as a hypothetical abstract characterization of the knowledge a perceiver uses in

performing perceptual inference. Although the phrase was not used to describe it, a

simple generative model lies at the heart of signal detection theory (Green & Swets,

1966): According to this theory, perceivers are thought to receive signals selected from

either a signal plus noise distribution or a noise alone distribution. The parameters of

the model are the probabilities of signal plus noise versus noise alone, and the means

and standard deviations of each of the two distributions. Signal detection theory pro-

vides a theory of optimal perceptual inference in this situation. The generative model

we offer here for letter displays is a bit more elaborate, but similar in spirit. It is very

similar to the formulation of the beliefs about the probabilistic structure of letter dis-

plays used in the model of Rumelhart and Siple (1974), although these authors did not

use this terminology.

According to our generative model, the feature array that reaches a perceiver’s eye is

generated by first selecting a word wi at random from the possible words in a target lexi-

con (here, a set of English words that are all four letters long), with a probability p(wi)

monotonically related to the word’s language frequency. Once a word is selected, a

sequence of letters is generated probabilistically based on the word. The probability of
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generating letter j in position k given that word i was selected is represented p(ljk|wi).

With high probability (assumed to be .9 in our simulations), the letter in each position is

the correct letter for the given word, but there is a small probability that one of the other

letters of the alphabet may be generated instead (given that the correct letter’s probability

is .9, the probability of each of the other letters is .1/25, or .004). Letters, in turn, give

rise to a specification of presence or absence values for each of a set of possible letter

features treated (following Rumelhart & Siple, 1974) as line segments (Fig. 5). For exam-

ple, the letter T specifies that line segments should be present across the top of the corre-

sponding feature array and down the middle of the array, and that other possible line

segments that could occur in a feature array should be absent. Generation of feature val-

ues from letters and/or their registration by the perceptual system is also treated as proba-

bilistic. Specifically, for a given letter position k, the probability of generating value v
(which can be present or absent) for feature dimension f given letter j is represented

p(vfk|ljk). The probability of generating the correct value of a given feature is relatively

high (.9 in our simulations), and the probability of generating the incorrect value is equal

to one minus this high value (.1).

Given the generative model above, it is possible to calculate the probability of every

possible path through the generative model, where a path consists of a choice of one

word, a choice of one letter in each position in the word, and a choice of one value (pres-
ent or absent) for each feature in each letter position. We use the notation Pp to represent

a particular path, using the same subscript p that we used previously for the states of a

Boltzmann machine. This usage is appropriate, since patterns of activation in the MIA

model will correspond to paths through the generative model.

The probability of a particular path Pp, represented p(Pp), is simply the product of the

probabilities of each of the individual probabilistic events assumed to underlie the crea-

tion of the path according to the generative model:

Fig. 5. The letters A–Z as they are represented in the Rumelhart & Siple font, with the full set of features

shown in a single block below the letters. From fig. 2, p. 101 in Rumelhart and Siple (1974). Copyright ©
American Psychological Association. Reprinted with permission.
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pðPpÞ ¼ pðwiÞ
Y
k

pðljkjwiÞ
Y
f

ðvfkjljkÞ
 !

:

5.3. Perceptual inference under the generative model

The problem of perceptual inference (for our case) is to take a set of specified fea-

ture values {V} and infer which of the possible paths consistent with this set of feature

values gave rise to it. The possible paths are all the paths that have the given set of

specified feature values. There is one such path for each combination of one word and

one letter in each position (in the model, there are 1,179 possible words, and 26 possi-

ble letters per position, for 1,179 9 264, or approximately 540 million such paths).

The probability of path p given the specified feature values, represented as p(Ppj{V}),
is called the posterior probability of the path. The posterior probability of path Pp is

given by

pðPpjfVgÞ ¼ pðPpÞ=
X

p0
pðPp0 Þ;

where the summation in the denominator runs over all possible paths consistent with the

specified feature values {V}.
In principle, we could calculate the probability of each such path, given the set of

observed features, and choose the one that is most likely to have generated the observed

features under the generative model. The multinomial IA model does not carry out this

explicit calculation. Instead, the model samples from the set of possible activation states

Sp, corresponding to possible paths through the generative model. While the model does

not always sample the most probable state, it has the following property: The more prob-

able a state is under the generative model, the more likely the state is to be sampled. We

shall make this statement more precise below.

5.4. The MIA model: Using interactive activation to sample from the posterior
distribution of the generative model

We now describe the MIA model and explain how it can sample from the correct pos-

terior probability distribution over alternative possible interpretations of the set of speci-

fied feature values produced by the generative process above, where an interpretation

corresponds to a path, specifying one word and one letter in each position.

As in the original IA model, the model (shown in Fig. 2) contains a unit for each pos-

sible word; a unit for each possible letter in each of four positions; and a unit for each

possible value (present or absent) of each feature (e.g., horizontal across the top) of each

of the four input feature arrays.3 Units are organized into pools corresponding to sets of

mutually exclusive alternatives. One pool consists of the set of units corresponding to the

possible words and four other pools correspond to the sets of units for each of the possi-
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ble letters in each of the four-letter positions. There are also four sets of 14 pools of units

at the feature level: Each of these pools contains a “present” and an “absent” unit for a

specific feature in a specific letter position.

The MIA model replaces the original model’s pair-wise inhibitory connections between

units in the same pool with the constraint that only one unit in a pool can be active at

one time. Under this constraint, each pool now corresponds to a multinomial random var-

iable—a variable that can take one of n alternative values, where n corresponds to the

number of units in the pool. This is the feature of the model that gives rise to the word

“multinomial” in its name. (Dean, 2005 proposed such a scheme in his computational

model of neocortex; see also Lee & Mumford, 2003). Like the mutual inhibition assump-

tion in the original model, the mutual exclusivity assumption in the MIA model is consid-

ered to be an idealized, conceptual-level consequence of the local inhibitory circuitry

found throughout the brain; it plays a role similar to the role of the mutual inhibition

between units in the same pool in the original model. This way of treating inhibition is

similar to the divisive normalization model proposed by many modelers (e.g., Grossberg,

1978) and used by neuroscientists to model neural responses in visual cortex (Heeger,

1992).

In the MIA model, the probabilistic information that characterizes the generative model

described above is used explicitly to set the bias terms and connection weights of the net-

work. For reasons discussed below, the biases and weights correspond to logarithms of

the relevant probabilistic quantities. Specifically, bias weights are assigned to each word

unit. The value of the bias weight bi on the unit for word i is set equal to ln(p(wi)), that

is, the natural logarithm of the probability that word i would be sampled by the genera-

tive process described above (in what follows, the word “logarithm” always refers to the

natural logarithm). The connection weight between each word unit wi and each letter unit

ljk for letter j in position k is set to ln(p(ljk|wi)), the logarithm of the probability that the

letter would be generated given that word i was the word selected by the generative

process. Similarly, the connection weight between the unit for letter j in position k and

the feature unit for each of the two possible values of feature f in that position is set to ln

(p(vfk|ljk)), the logarithm of the probability that the feature would be generated under the

generative model, given that the letter had been generated.

In summary, the MIA model embodies in its connection weights a logarithmic transfor-

mation of the probabilistic information in the generative model described above. If the

model’s knowledge exactly corresponded to the logs of the probabilities in a generative

model that actually produced the displays used in a particular experiment, its outputs

could be related to the true probabilities of events in the world that generated these

inputs. Alternatively, we can think of the model as representing subjective estimates of

these probabilities as they are employed by perceivers. In that case, to the extent that

there are differences between the knowledge embedded in perceivers’ perceptual systems

and the true statistics of the world, perception that would be optimal with respect to the

estimates might be non-optimal with respect to the statistics of the real world.

For the sake of our present goal of demonstrating that the multinomial IA model can

sample from the posterior of the probability distribution defined by the generative model,
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we consider a case in which the present or the absent values of a subset of the features

of a presented letter string are specified by an external input. For the example in Fig. 6,

none of the features in the first position were specified, whereas the features in the sec-

ond, third, and fourth positions were the features of the letters O, O, and D, respectively.

According to the generative model (bars labeled calculated probability in the figure), the

letters that form words with the context (F, G, H, M, and W) are all fairly likely; differ-

ences among them mostly reflect differences in the values of p(w) for the associated

words (FOOD, GOOD, HOOD, MOOD and WOOD).4

5.5. Processing in the MIA model

As in the Boltzmann machine, feature specifications are presented to the model by

turning on the unit corresponding to the value of each specified feature. Processing begins

with feature units clamped as specified above, and with no units active in any of the letter

pools or in the word pool. Processing takes place over a number of cycles, similar to the

random updating process in the Boltzmann machine. However, in our case the cycle is

Fig. 6. Comparison of directly computed posterior probabilities and the results of the Gibbs sampling process

in the multinomial interactive activation (IA) model, for letters in the first position of a four-letter display. The

figure shows the calculated posterior probability of each possible letter in the first position of a four-letter

array, following the presentation of a display in which no feature values are specified in the first position fol-

lowed by full specification of features of the letters O, O, and D in the second, third, and fourth positions,

respectively. The gray bars represent the calculated Bayesian posterior probabilities for the first letter position.

These probabilities reflect the lexical knowledge embodied in the generative model. For this calculation, p(l|w)
was set to .9 for the correct letter in each position of the word, and .1/25 for each of the other possible letters,

and p(f|l) was assumed to be .9 for the correct value of each feature of each letter, and .1 for the incorrect

value. The white bars represent the sampled probability that each of the letters in the first position was active

after 50 iterations of the multinomial IA model. The weights in the model were set to correspond to the loga-

rithms of the probabilities used for the Bayesian calculation, as described in the text. A total of 10,000 simu-

lated trials were run for 100 iterations. Results are mean probabilities averaged over iterations 51–100. Slight
differences between sampled and calculated probabilities are within the range of sampling error.
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not random (although this detail is not critical for the functioning of the model, it makes

discussion of the meaning of the computation somewhat simpler). Within a cycle, activa-

tions are first determined for each of the four-letter pools, using the existing activations

at the feature and word levels; then activation is determined for the word pool, using the

activations in each of the four-letter positions as well as the bias weights associated with

each of the word units. Determination of activation in each pool begins by calculating

each unit’s net input, based on the weights, biases, and activations of other units as usual.

As previously stated, the model differs from the original IA model and indeed

the original Boltzmann machine in that, at each time step, only one letter unit in

each position and only one word unit may be active; the active unit is chosen

probabilistically using the softmax function, so that, for each unit within the pool, the

probability that a unit is chosen depends on the exponential function of its own net

input divided by the corresponding quantities for all the units in the pool (itself

included):

pðai ¼ 1Þ ¼ eneti=TP
i0
eneti0=T

:

Here, i and i0 index the units in the pool being updated and T corresponds to tempera-

ture as in the Boltzmann machine. The softmax function can be viewed as an extension

of the logistic function used in the Boltzmann machine, where the logistic function sets

the activation of a single unit into either the on or the off state, while the softmax func-

tion sets a multinomial random variable into one of its n alternative states, in which

exactly one of the units in the pool is active.

Let us now consider the relationship between this computation and sampling from the

posterior probabilities of possible letters, given a set of observed features. For specificity,

consider the computation of the activation for the pool of units corresponding to the letter

in the second position of a four-letter display, on the first cycle of activation, when no

units are active at the word level. In this case, the sending units are units corresponding to

values of features in the second letter position, the receiving units are the units for possible

letters in the second position of the string, and the weights are the connection weights

between the letter and feature units, each of which corresponds to the log of the probabil-

ity of the particular value of the feature (present or absent) given the letter. Noting that the

activation of a sending unit is equal to 1 for the unit corresponding to the specified value v
of feature f, and that there are no bias terms specified at the letter level in the model, the

expression for the net input to letter unit j in position k can be rewritten as

netjk ¼
X
f

lnðpðvfkjljkÞÞ:

Now, when we compute enetjk for use in the softmax function to compute the probabil-

ity of activating the unit, this expression turns into
Q

f pðvfkjljkÞ, the probability that we
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would have generated the observed values of the features from the given letter, under the

generative model.5 Plugging these values into the softmax function, we see that it is

equivalent to:

pðajk ¼ 1Þ ¼
Q

f pðvfkjljkÞ
� �1=T
P
j0

Q
f pðvfkjlj0kÞ

� �1=T

For the case where T = 1, this equation corresponds to Bayes’ formula for the poster-

ior probability of letter j, given the values of the features (McClelland, 2013).6 In that

case, the softmax function will choose a letter to activate with a probability equal to the

posterior probability of the letter given the specified features. If T is unequal to 1, these

probabilities will be taken to the 1/T power, then renormalized. As stated before, we can

express this more compactly as

pðajk ¼ 1Þ /
Y

f
pðvfkjljkÞ

� �1=T

5.5.1. The roles of logs and exponentials in linking neural and probabilistic computation
The reader may be tempted to ask at this point why we have bothered with using the

logarithms of probabilistic quantities in defining the strengths of the connection weights

in the MIA model network, since we then proceed to undo this logarithmic transformation

when we exponentiate the net input to a unit for use in the softmax function (see note 5)

or the closely related logistic function. Indeed, it would be possible to reformulate the

MIA model, directly using the prior probabilities of words and the conditional probabili-

ties of letters given words and of features given letters, and then redefining the activation

function accordingly. The reason for using the logs of these probabilistic quantities is

based ultimately on the inspiration from neuroscience that continues to lie behind the

MIA model and other neural network models, and on the previous history of models link-

ing neurons to computation. The MIA model traces its lineage through a marriage of the

original IA model, a descendent of an earlier model of Grossberg (1978), with the Boltz-

mann machine, a descendent of the earlier model of Hopfield (1982). Ultimately, these

models can in turn be traced back through the Perceptron (Rosenblatt, 1958) to the

McCullough-Pitts neuron (Pitts & McCullough, 1947), a device that added up weighted

signals and compared them to a threshold. The idea that neurons additively combine

excitatory and inhibitory signals, and then fire when a threshold is reached, is, or course,

the standard intuitive simplification of a model neuron relied on by neuroscientists. In the

presence of a source of additive Gaussian noise in the inputs to such a simplified model

neuron, the probability of firing will closely match the logistic function of the summed or

net input. Thus, the McCullough-Pitts neuron with noise added to its input turns out to be

a closely approximate implementation of the logistic neuron used in Boltzmann machines,
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which in turn implements Bayes’ rule if the weights and bias terms are set to the logs of

the appropriate probabilistic quantities, as Hinton and Sejnowski (1983) were the first to

point out (see McClelland, 2013, for further discussion of a possible neural basis for the

softmax function).

Returning to the main thread of our development, we now consider the net input to

each unit at the word level. In this case, the net input consists of the bias term represent-

ing the log of the subjective probability of the word, plus the sum of terms corresponding

to the product of the activation of each letter level unit, times the weight between the

word unit and the letter unit. From the first step in the computation described above, one

letter unit in each position has an activation value of 1, while all other letter units’ activa-

tion values are 0, so the net input to word unit i becomes

neti ¼ lnðpðwiÞÞ þ
X
k

lnðpðljkjwiÞÞ

where ljk represents the active letter unit in position k. Now, computing eneti , we obtain

the probability, under the generative model, that the word would be chosen for presenta-

tion, times the probability that the active letters would have been generated, given that

the word had been chosen. Putting this into the softmax function, we obtain

p ðai ¼ 1Þ / pðwiÞ
Y

k
pðljkjwiÞ

� �1=T
Expressing this in words, the probability that a given word unit is chosen to be the

only one active is proportional to the prior probability of occurrence of the word,

times the probability that the word would have generated the set of active letters.

Again, this implements the basic logic of Bayes rule for calculating a posterior proba-

bility that a particular word was presented, in this case given prior information (repre-

sented by p(wi)) and the likelihood of evidence (in this case the active letters) given

the word.

Finally, let us consider the activation of a unit j in any one of the letter pools on the

next cycle, when there is a single-word unit active at the word level. The net input to

each letter level unit is the same as before, but with an extra term corresponding to the

log of the probability of the letter, given the active word. Once this expression is expon-

entiated, it corresponds to the probability of the letter given the active word, times the

probability of the set of specified features, given the letters. The expression for the proba-

bility that a given letter j will be activated in position k is

pðajk ¼ 1Þ / pðljkjwiÞ
Y

f
pðvfkjljkÞ

� �1=T
Thus, after the second update of letter level activations, the probability that a given let-

ter unit in each position is chosen to be the active unit in that position is proportional to
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the probability of the letter, given the active word, times the probability of the set of fea-

tures in the given position, given the letter, scaled by 1/T.
Note that the weights between word and letter units and between letter and feature

units were defined in terms of the top-down, generative process that is treated as underly-

ing the creation of the displays. The letter-to-feature weights are used in computing bot-

tom-up input from feature to letter units and the word-to-letter weights are used in

computing the bottom-up input from the letter to the word units. The word-to-letter

weights are also used to compute the top-down influences from the word units to the let-

ter units, and, although we do not consider it here, the letter-to-feature weights could be

used to fill in missing feature-level activations. Thus, the same connection weight values

are used symmetrically, in both directions, even though their values are those specified in

the top-down generative model. Because the weights are used symmetrically, the model

shares an essential characteristic with the Boltzmann machine: The activation updates

tend to move the states of the network in the direction of states of higher overall

goodness.

In summary, given the order of processing specified above, and running with T = 1,

the probability that a given letter unit will be active in a given position will correspond

to the probability of the letter given the features under the generative model. When the

word level is first updated, a single word will be chosen with a probability proportional

to the probability of the word given the chosen letters. Thus, our calculation will produce

a sample from the possible states of the underlying generative model that could have pro-

duced the observed features. However, our estimates of the probabilities of the letters

have not yet taken the word-level information into account. The next update at the letter

level does take the word-level information into account, so that, for each letter position,

the probability that a letter unit will be active is equal to the probability of the letter,

given both the active word and the given array of features.

It might seem that the computation is complete at this point, but the probabilities of

letter activations after the second update at the letter level do not exactly match their cor-

rect posterior probabilities. However, as the sampling progresses through additional cycles

alternating between updates and the word and letter levels, the activation probabilities

converge toward the correct posterior probabilities. The sampling procedure is a general-

ization to the multinomial case of the procedure used in the Boltzmann machine to set

activation states. Like the Boltzmann machine sampling procedure, our procedure is an

instance of Gibbs sampling (Geman & Geman, 1984), a widely used procedure that origi-

nated in statistical physics, where it has been shown to provide unbiased samples from

the posterior of a probability distribution by making local updates of individual variables

consistent with the conditional distribution of these individual variables given the current

values of other variables (see McClelland, 2013, for details). This is exactly what we are

doing in the MIA: We are sampling states of the letter units, conditional on states of the

word and feature units; and we are sampling states of the word units, conditional on

states of the letter units and feature units (although the feature units only affect the word

units indirectly, via the states of the letter units).
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5.6. Probabilities of states of the MIA model and pathways through the generative model

If we sample states of the MIA model at some temperature T, the probability that we

will be in a given state after an initial “burn-in” period is equal to eGðspÞ=T , where the

goodness is defined as it was above. For the specific case of the MIA model, the

goodness becomes

GðSpÞ ¼ lnðpðwiÞÞ þ
X
k

ln pðljkjwiÞ þ
X
f

ln pðvfkjljkÞ
 !

exponentiating this expression, we obtain:

eGðspÞ ¼ pðwiÞ
Y
k

pðljkjwiÞ
Y
f

ðvfkjljkÞ
 !

The expression on the right is the probability, under the generative model, that the path

through the generative model underlying the observed set of features is the one that cor-

respond to state Sp. Plugging this into the probability-goodness equation, we see that the

model visits such states with probability proportional to the temperature-scaled probabil-

ity that they actually generated the observed features:

pðspÞ / pðwiÞ
Y

k
pðljkjwiÞ

Y
f
pðvfkjljkÞ

� �� �1=T
or more simply

pðSpÞ / pðPpjfVgÞ1=T

The temperature parameter T has both an overt and a covert role in the behavior of the

model. Overtly, when T is very high, all states become equiprobable, whereas when T
becomes very low, only the states with the highest posterior probability have any apprecia-

ble chance of being sampled by the network after the “burn-in” period. However, if the net-

work is run at a very low temperature, the burn-in period becomes exceedingly long. The

approach initially suggested for the Boltzmann machine was to use simulated annealing,

whereby T starts high and is gradually reduced. Instead of this, in the simulations we have

conducted with the MIA model, we have run the model at a fixed temperature T = 1. In this

case, we have found that the network achieves the correct posterior probability distribution

in less than 20 cycles, and the approximation is quite good within about 10 cycles.

5.7. Making overt responses based on the state of the model

The development thus far shows how an interactive neural network can sample from

the posterior of the probability distribution over entire states of a neural network. These
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states are samples from the joint distribution of assignments of both letter and word iden-

tities that could have given rise to the actual features present in the network’s input.

Should we be interested in determining the identity of a particular item—say, the letter in

a given position, as in many visual word recognition studies, or the whole word, as in

many other studies—we can observe that the probability of being in a state where the

unit in question is active (regardless of the activations of other units) corresponds to the

correct posterior probability of the item. In other words, the network’s states are simulta-

neously samples from the marginal distribution of each of the multinomial variables and

the joint distribution of all of these variables. This is exactly what Rumelhart (1977)

envisioned as the outcome of interactive processing in perception.

To generate a response that is a sample from this distribution, say about the identity of

the letter in the first position of a word, a perceiver would only need to report the identity

of the letter that had been selected through the iterative settling process. Simulations of

the model verify this mathematical fact; one example illustrating this is shown in Fig. 6

(see caption for further explanation).

5.8. Sampling as an approximation to optimality

We have described a model in which perception involves sampling from the posterior

of the generative model characterizing the stimuli presented to the perceptual system. It

should be noted here that the truly optimal policy would be to choose the alternative with

the highest posterior probability, rather than sample alternatives in proportion to their rel-

ative probability, the policy we follow in the model by setting the temperature parameter

T to 17. Alternatively, however, we can see the temperature parameter as reflecting intrin-

sic processing noise in the perceptual system. In that case, we can see each trial in a per-

ceptual experiment as an attempt to find the single best interpretation subject to the

prevailing level of noise. In either case, the higher the temperature, the more random

behavior will be. The advantage of higher temperature is that it allows fuller exploration

of the range of possible perceptual interpretations and avoids premature commitment

early in a computation.

In Boltzmann machines, optimal perceptual interpretation is made possible by gradu-

ally reducing temperature, but this policy is only guaranteed to find a global optimum

after an infinite time. In view of the real-time constraint, sampling at a fixed intermediate

temperature may be the compromise the brain adopts as its approximation to optimal

perceptual inference in real time.

5.9. Perceptual facilitation in non-words in the MIA model

As we noted earlier, an important feature of the original IA model was the fact that it

accounted for the facilitation of perception of letters in pseudowords, such as MAVE, as

well as for facilitation of perception of letters in words. In the original model, this

occurred because a non-word could partially activate several words that shared letters in

common with the string presented. At first glance, it might be supposed that the MIA
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model would not show the same pattern, since only one word is active at a given time.

To explore this, we considered the ambiguous displays in Fig. 7, where the letter in the

second position is partially occluded but occurs either in a word, in a pseudoword, or by

itself. The available features are equally consistent with the letters A and H in the Rumel-

hart-Siple font used to represent letters in the simulation. Can the model successfully use

context to resolve the ambiguity, selecting A as the more likely alternative, even if the

ambiguous segment occurs in a pseudoword context?

To address this question, simulations with each of the three displays shown in the fig-

ure were conducted. For the single letter alone case, the word level was switched com-

pletely off, as a baseline for assessing the influence of the word level in the other two

contexts. The results are shown in Fig. 7. As the figure indicates, in the absence of con-

text (white bars), the alternatives A and H are both chosen about half of the time, since

the feature values specified are maximally consistent with both of these alternatives. With

either context, the letter A becomes far more likely than the letter H. This occurs to a

greater extent when the first position contains a C than when it contains an M, but it

occurs to a considerable extent in both cases.

Fig. 7. Probability that different letters are activated in the second letter position when an ambiguous charac-

ter equally consistent with A or H is presented in different contexts (black bar: C_VE; gray bar: M_VE;

white bar: no context). In the generative model based on the Rumelhart-Siple font, both A and H are equally

likely to generate the features shown, and the letter P is next most likely. But when the context is C_VE or

M_VE, A is far more likely. The M_VE context supports the letter O to some degree, but the feature infor-

mation is unlikely under the hypothesis that the letter is O, so overall O is much less likely than A.
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Why does the model tend to choose the letter A in both contexts? When the rest of the

letters form the word CAVE, the entire display is far more likely to have been generated

by CAVE than any other word, and thus the letter A is far more likely to have been the

letter in the second position than the letter H. When the first letter is M, no single word

is highly likely to have generated all of the observed features. In fact, the word MOVE is

overall more likely than any other single word (although it is inconsistent with some of

the features in position 2, it is consistent will all of the features in all of the other posi-

tions). However, many other words, including CAVE, GAVE, HAVE, SAVE, and

WAVE, as well as MADE, MAKE, MALE, MARE, and MATE, are all partially consis-

tent with the full set of features. Each of the words listed is sometimes sampled at the

word level; when MOVE is sampled, the model can choose O as the letter in the second

position, but it can also choose A or H, since these letters can occasionally be generated

according to the generative model when the underlying word was MOVE. When one of

the words containing A in the second position is sampled, it almost always chooses A as

the corresponding letter.8

5.10. The MIA model exhibits logistic additivity, addressing a limitation of the original
IA model

We have seen that, in the multinomial IA model, if settling occurs at a fixed tempera-

ture T = 1, exact matching of posterior probabilities according to our generative model

can be obtained. Do human perceivers also match these posterior probabilities? Since it is

hard to obtain independent evidence of the subjective probabilities involved, the tendency

has been to determine whether or not perceivers are combining context and stimulus

information according to the functional form we would expect if they were performing

optimally. Interestingly, there is a simple functional form that arises in the multinomial

IA model and other stochastic variants of the IA model for the way in which a factorial

manipulation of stimulus and context information should affect the probability of choos-

ing a particular alternative (McClelland, 2013; Movellan & McClelland, 2001): It is easy

to show (for a subset of these models, including the multinomial IA model) that the

logit of the probability of making a particular response (where logit(p) is defined as ln

(p/(1�p)) a quantity also known as the log-odds) should correspond to a sum of two

quantities, one due only to the stimulus (corresponding to the relative probability of the

sampled features given the item) and another due only to the context (corresponding to

the relative probability of the item given the context).

logitðpiÞ ¼ si þ ci

An additional term bi can be included to incorporate a bias associated with the alterna-

tive’s prior probability. This relationship (which Movellan and McClelland called logistic
additivity) holds at least approximately in the data from many studies investigating the

joint effects of context and stimulus information (see Movellan & McClelland, 2001 for a
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review; see Pitt, 1995 for one exception). The multinomial IA model exhibits logistic

additivity, and its tendency to do so is unaffected by the value of the temperature param-

eter (T): T can be thought of as scaling the magnitudes of the stimulus and context terms

in the model’s predictions, but it is not in general separately identifiable from the data.

As Massaro (1989) noted in his early critique of the original IA and TRACE models,

these models did not capture the logistic additivity seen in the data from many experi-

ments, and this failure was the basis for his conclusion that interactivity fundamentally

distorts perception; similar concerns have contributed to the criticisms offered by Norris

et al. (2000) and Norris and McQueen (2008). While the original model’s assumptions

did distort this relationship, the problem was not in fact due to interactivity: As men-

tioned above, the influence of multiple sources of input failed to exhibit logistic additivity

under the activation functions used in the original models even when propagation of acti-

vation was strictly feed forward (McClelland, 1991). In any case, logistic additivity is

observed in the MIA model, overcoming this limitation of the original model.

It is important to note that logistic additivity is observed in a number of other variants

of the IA model (McClelland, 1991, 1998; Movellan & McClelland, 2001); in particular,

it is not necessary to assume the unit activations are binary. Although the result is harder

to prove mathematically for such cases, it has been demonstrated to hold in simulations.

The variants that exhibit logistic additivity incorporate variability in the input to the

model and/or intrinsic to processing within the model.

5.11. Interim summary

It is hoped that the exposition of the MIA model makes clear that interactive activation

produces a good approximation to optimal perceptual interpretation in real time, in accor-

dance with the IA hypothesis, and that the MIA model (along with other variants of the IA

model) can capture the logistic additivity pattern seen in data. This does not mean, of

course, that the MIA model is the best possible model of human perceptual processing or

even that interactivity is a part of the process of perception. Indeed, critics have argued that

interactivity is not necessary to achieve a good approximation to optimality, leading them to

argue for models in which processing is unidirectional. We now turn to consider this issue.

6. Is it advantageous for influences to feed back into the perceptual system?

A number of authors have proposed that context effects on letter or phoneme identifi-

cation can be adequately explained by relying only on feed-forward processing, with inte-

gration of stimulus and contextual information occurring at a subsequent, decision stage

(e.g., Massaro, 1989; Norris & McQueen, 2008; Norris et al., 2000; Paap, Newsome,

McDonald, & Schvaneveldt, 1982). A post-perceptual decision level that integrates per-

ceptual and contextual information can explain how stimulus and lexical information

affect letter or phoneme identification (Fig. 8a). Thus, these authors have argued, interac-

tive activation is of no benefit, and it need not be incorporated into models of perception.
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We argue that there are two important ways in which interactive activation can be ben-

eficial:

1. It implements optimal perceptual identification over many representational levels

and at many positions within a level at the same time.

2. It allows the consequences of these processes to be available inside the perceptual

system itself, thereby allowing for the possibility of knock-on consequences for pro-

cessing of other inputs or for processing the same item on later occasions.

We consider these points in the next two sections.

6.1. Implementing optimal inference over many levels and positions simultaneously

To underscore the first advantage of an interactive approach, we contrast it with

the approach proposed by Massaro (1989), who has advocated strictly feed-forward

(a)

(c)

(b)

Fig. 8. (a) Massaro’s schematic representation of the integration of stimulus and context information accord-

ing to his Fuzzy Logical Model of Perception, reprinted from fig. 1, p. 401 of Massaro (1989). Copyright ©
Elsevier Ltd, reprinted with permission. The A and V variables in Massaro’s figure correspond to the stimulus

and context variables presented in the text. (b) Schematic diagram indicating a unidirectional propagation of

information for computing the contextual and stimulus factors used in Massaro’s model for the identification

of the segment in the middle position of a three-phoneme syllable. (c) The architecture of the MERGE model

of speech perception (Norris et al., 2000), reprinted from fig. 11, p. 384 of Norris and McQueen (2008).

Copyright © American Psychological Association, reprinted with permission.
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computation for the integration of context and stimulus information in perception. Similar

points apply to the approach favored by Norris and collaborators (Norris & McQueen,

2008; Norris et al., 2000), as we shall discuss below.

Massaro’s model focuses on the perceptual identification of a single specified target

item. For example, in one experiment (Massaro & Cohen, 1983) of the type considered

by Massaro, the target item was the second speech sound in a monosyllable beginning

with either /t/, /s/, /p/, or /v/, and ending in the vowel /i/ (‘ee’). Seven different sounds

were presented in each context, between the initial consonant and the vowel, organized

on a continuum from /l/-like to /r/-like, for a total of 28 distinct stimuli in all. Each stim-

ulus was presented many times to each participant, with the task of identifying the second

segment as either /l/ or /r/.

From a Bayesian point of view, one could propose that perception depends on calculat-

ing an estimate of the posterior probability that a given input is /r/ or /l/, using both stim-

ulus and context as sources of constraining information. This can be done by calculating,

for each context c, the quantities p(r|c) and p(l|c); and also by calculating for each stimu-

lus s, the quantities p(s|r) and p(s|l). The correct posterior for p(r|s,c) is then given by:

pðrjs; cÞ ¼ pðsjrÞpðrjcÞ
pðsjrÞpðrjcÞ þ pðsjlÞpðljcÞ

Massaro’s model (Fig. 8a) assumes that participants calculate quantities corresponding

to normalized estimates of the probabilistic quantities in the above formulation.9 Notably,

the representation of context used in the calculation described above excludes the stimu-

lus information from the second segment; the first and last segments specify the context,

while the second provides the stimulus information used in the calculation.

The information encoded in the connection weights in a three-phoneme-slot processing

system could be used to calculate the terms needed for Massaro’s model, although we

would then be using this knowledge in a feed-forward, rather than an interactive fashion

(Fig. 8b; although arrows go up and down in this figure, each arrow goes in only one

direction, and there are no feedback connections). The featural information in the first

and last positions would be used to calculate p(p|f) for each possible phoneme in the first

and last positional slots; then, at the word level, one can calculate p(w|{p1},{p3}) for each
word in the lexicon, relying as before on the assumptions of our generative model (the

expression {p1} denotes the vector of p(p|f) values for all possible phonemes in position 1,

and similarly for {p3}). The quantity p(r|c) can now be calculated as the sum over all

words of the probability of the word given the input in the first and last position, times

the probability of r in the second position given each word, and similarly for p(l|c). This
corresponds to using the connection weights between the phoneme and word units in one

direction in the first and last position, and in the opposite direction in the second position,

as illustrated in the figure. The desired quantity p(r|s,c) is then calculated by combining

the lexical input with the bottom-up stimulus support calculated for the phonemes in the

second position and then using the above equation. This calculated probability is then

used to generate the r response with probability p(r|c,s) or the l response with probability
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p(l|c,s) = 1 � p(r|c,s). An alternative, sampling-based approach that would produce r
responses with the same probability would proceed by selecting a single phoneme in

positions 1 and 3, based on the feature input to these positions; then selecting a single

word based only on these phonemes; then selecting between r and l for the middle posi-

tion based on the selected word and the feature input in the second position. In either

case, the calculations are unidirectional, and contextual and stimulus support for the

target item are calculated separately, as Massaro’s model proscribes.

We can now contrast Massaro’s feed-forward proposal with the interactive activation

approach, in which a bidirectional computation is applied across all positions, as previ-

ously described. In Massaro’s model, the computations outlined above are only valid for

calculating the posterior probability of the phoneme in the second position. This may not

seem problematic when considering the experimental paradigm used by Massaro and

Cohen (1983), where the target was always the phoneme in the second position (See

Fig. 8b). However, in most experiments on the perception of letters in words, including

the experiments of Reicher (1969), Massaro and Klitzke (1979), and nearly all of the

experiments addressed by the IA model, participants are not cued prior to the trial on

which letter will be the target letter. For these cases, the multinomial IA model simulta-

neously samples from the correct Bayesian posterior in all four positions. Furthermore,

the MIA model uses the same representation at the word level both as its sample from

the distribution of possible words and as the basis for constraining perception of each

possible letter. For Massaro’s model, the context representation for each position excludes

the bottom-up information from that position, and thus is an incomplete representation of

the information relevant to the identification of the word. In short, for an input containing

three letters, four different word-level quantities are needed, one for word level, and one

for each letter position.10

Feed-forward computation in MERGE and related models. An approach very similar to

Massaro’s is advocated by Norris and colleagues in their models of perceptual processing

of words and letters or phonemes (Norris & McQueen, 2008; Norris et al., 2000). Just as

in Massaro’s model, the correct feed-forward calculation of the necessary top-down con-

straints for each letter or phoneme is different for each item at a lower level (e.g., for

phonemes in each position, the lexical context must be based on the phonemes in all

other positions). In particular, when considering the role of context on identification of a

target segment (e.g., the effect of the first two segments in job on the identification of the

final segment, see Fig. 8c), bottom-up information about the target segment is not

allowed to affect values at the word perceptual level until after the top-down influence

from the first two segments has been combined with the target segment information in

the phoneme decision layer (D. Norris, personal communication, July 2011). This would

be difficult to implement, since information about speech segments overlaps in the spoken

input. The difficulty is compounded when we consider the effects of subsequent context,

as in the classic experiment of Ganong (1980), where the target segment is the first seg-

ment in a word context – a /g/ or /k/ followed by “iss” or “ift,” or in experiments where

disambiguating context occurs in a subsequent word (Warren & Warren, 1971). To
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explain this effect, segments subsequent to the target segment must be allowed to affect

the word level, but the target segment must be prevented from doing so. In interactive

models, this complication is unnecessary. Context phonemes in all positions can affect

processing of each phoneme in each position simultaneously, with decisions about each

being updated as information becomes available, either about prior or subsequent ele-

ments of the input.

In summary, non-interactive models in the psychological literature have not addressed

the simultaneous use of context and stimulus information at multiple levels and multiple

positions within a level. They have tended to focus on joint use of context and stimulus

information in identifying a specified target item at one level of processing, without deal-

ing with the fact that in natural perceptual situations, the goal is to simultaneously inter-

pret multiple items at many different levels of processing. In contrast, interactive models

allow representations of alternatives at different levels and different positions within a

level to mutually constrain each other in an integrated parallel, distributed, and interactive

computation.

6.2. Knock-on consequences of interactive processing

We now consider the second advantage of interactive models over feed-forward mod-

els: Interactivity allows effects of context to affect subsequent processing within the per-

ceptual system. Such effects include effects on processing of neighboring items present in

the immediate context of a presented item, and effects on processing of similar inputs on

subsequent occasions.

Knock-on consequences for neighboring input items. A case of the first type was consid-

ered by Elman and McClelland (1988). They focused on a phenomenon in speech per-

ception known as compensation for coarticulation (Mann & Repp, 1981; Stephens &

Holt, 2003): The perceptual system seems to compensate for the effects that articulation

of one phoneme has on the acoustic realization of neighboring phonemes. For example,

the lip formations associated with /s/ and /S/ (“sh”) persist into the articulation of subse-

quent stop consonants like /t/ and /k/, shifting the frequency content of the successor.

Perceivers compensate for this, allowing more accurate recognition of the successor.

Thus, when an ambiguous sound between /t/ and /k/ is preceded by /s/, it will tend to

be heard as /k/; when preceded by /S/, it will tend to be heard as /t/. In this situation,

the presence of background noise or articulatory variability could obscure the identity

of the preceding fricative sound, robbing a strictly feed-forward system of information

to allow compensation. But if that fricative sound occurred in a lexically constraining

context, and feedback were allowed to influence the activation of the contextually more

likely fricative, compensation could nevertheless occur, improving identification of sub-

sequent phonemes. Elman and McClelland (1984) included a mechanism for producing

such compensatory effects in one version of the TRACE model, simulating the lexically

mediated compensation for coarticulation effect.

34 J. L. McClelland et al. / Cognitive Science (2014)



Elman and McClelland (1988) subsequently designed an experiment to determine

whether lexical context could trigger compensation for coarticulation, as the TRACE

model predicted. They presented ambiguous /t/ or /k/ sounds preceded by an ambiguous

fricative sound halfway between /s/ and /S/. In turn, the ambiguous fricative was preceded

by one of two different lexical contexts, one consistent with /s/ (e.g., “Christma_”) and

one consistent with /S/ (e.g., “fooli_”). If lexical information feeds back to influence pho-

neme processing, then the ambiguous fricative in “Christma_” should behave like an

acoustic /s/ and cause a shift in the perception of the following phoneme toward /k/. Con-

versely, the same ambiguous fricative in “fooli_” should behave like an acoustic /S/ and

cause a shift in the perception of the following phoneme toward /t/. This is precisely what

Elman and McClelland found. Although this result has been questioned (Pitt & McQueen,

1998), it has been replicated in multiple different laboratories, and with different sets of

materials (Magnuson, McMurray, Tanenhaus, & Aslin, 2003; Samuel & Pitt, 2003).

Those who favor non-interactive approaches have, however, presented recent evidence

further contesting the source of the effect (McQueen, Jesse, & Norris, 2009), and research

on the topic continues.

Knock-on consequences for processing similar inputs on subsequent occasions. Other

researchers have explored other knock-on effects of lexical context on phoneme identifi-

cation that are also predicted by the interactive account. One such effect has been demon-

strated using selective adaptation, a domain-general phenomenon in which repeated

presentation of a particular stimulus causes a perceptual shift such that neutral stimuli are

perceived as being less like the repeatedly presented stimulus. In the case of speech per-

ception, after repeated presentation of a phoneme (e.g., /s/), perception of an ambiguous

phoneme (e.g., halfway between /s/ and /S/) is shifted toward the alternative interpretation

(in this case, /S/; e.g., Samuel, 1986; Samuel & Kat, 1996). To demonstrate lexically med-

iated selective adaptation, a neutral sound (an ambiguous phoneme or a noise burst) was

repeatedly presented in lexical contexts that were consistent with only one interpretation.

If the neutral sound was presented in /s/-biased contexts such as “bronchiti_”, “arthriti_”,

etc., the selectively adapted representation was /s/; if it was presented in /S/-biased con-

texts such as “aboli_”, “demoli_”, etc., the selectively adapted representation was /S/

(Samuel, 1997, 2001). Thus, the lexical information determined which sublexical repre-

sentation was selectively adapted, influencing subsequent phoneme and word identifica-

tion.

A third example of knock-on consequences of lexical feedback—one that was pre-

dicted in the McClelland and Elman (1986) TRACE model paper—is lexically guided

tuning of speech sound categories. Such tuning is essential for listeners to be able to cor-

rectly identify different speakers’ productions, since phoneme category boundaries vary

between individuals. For example, speakers of English and Spanish center their /b/ and

/p/ categories at different points along a dimension called voice onset time. Furthermore,

regional dialects are often distinguished by differences in details of both consonant and

vowel production. Lexical information provides a ready source of information for tuning

speech perception in response to such shifts in speech sounds, and several studies
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beginning with Norris, McQueen, and Cutler (2003) now indicate that such tuning does

in fact occur in speech perception (van Linden & Vroomen, 2007 showed an analogous

shift in use of visual cues from the lips; for a review see Samuel & Kraljic, 2009). The

pre-lexical locus of this effect is supported by evidence that the tuning effect generalizes

to influence perception of words not used in the induction of the effect (McQueen, Cutler,

& Norris, 2006). In TRACE, lexical information feeds back to influence pre-lexical pho-

neme unit activations, and Mirman, McClelland, and Holt (2006) augmented TRACE

with a simple Hebbian learning rule to adjust the feature to phoneme connections, allow-

ing it to simulate the relevant experimental findings.

More generally, Friston (2003; see also Spratling & Johnson, 2004) has argued that top-

down feedback is necessary to learn the hierarchical representations that are found

throughout perceptual and cognitive systems, and indeed some form of feedback is used in

many different neural network learning algorithms. Proponents of autonomous/feed-for-

ward accounts of perception acknowledge the necessity of feedback for learning but insist

that this feedback is not equivalent to the “online” feedback that influences processing in

interactive activation models (e.g., Norris et al., 2003). We argue that a system in which

feedback can guide learning as well as perception provides a parsimonious account. Fur-

thermore, if feedback guides learning, then the learned representations will necessarily

reflect a combination of bottom-up and top-down information, making the representations

themselves both consequences of and intrinsic to their roles in interactive processing.

In sum, feedback not only allows contextual constraints to determine the identity of

elements (such as letters and phonemes) of larger units (such as words) but also allows

the results of this contextually determined identification process to influence processing

of neighboring elements (compensation for coarticulation) and subsequent occurrences of

the same elements (adaptation, retuning). Knock-on consequences of feedback provide

both motivation for and evidence of direct top-down feedback in perception.

7. Neural basis of interactive processing

7.1. Basic neuroscience findings

Evidence from research on the neural basis of perception supports the presence of

interactive processing in the brain. Interactive processing is supported by a basic feature

of brain architecture: Wherever in the neocortex there is a “forward” path from area A to

area B there tends to be a strong (sometimes much stronger) return pathway (Felleman &

van Essen, 1991). Many studies correspondingly show that reversible inactivation of puta-

tively higher level or downstream cortical areas (e.g., higher level visual or auditory cor-

tex) affects stimulus-driven activity in primary areas (e.g., Hup�e et al., 1998; Carrasco &

Lomber, 2010), implicating reciprocal interactions in cortical processing. Neural record-

ings in rhesus monkeys indicate that the same “edge detectors” in V1 that respond to

physically present edges also respond to illusory edges in Kanizsa figures. The illusory

contour response in V1 was found to occur later than the response in V2, suggesting that

36 J. L. McClelland et al. / Cognitive Science (2014)



the response in V1 was due to feedback from higher level visual processing (Lee &

Nguyen, 2001). Similarly, binocular rivalry appears to be a mutual constraint satisfaction/

interactive activation process with neurons in many different visual areas, from V1/V2 to

inferotemporal cortical areas, showing consistency with the global percept (Leopold &

Logothetis, 1999). Evidence of bidirectional propagation of activity between occipito-tem-

poral and pre-frontal brain areas is also seen in human magneto-encephalography (MEG)

studies of visual object recognition (e.g., Bar, 2004).

In addition to top-down feedback from higher levels within a processing modality, neu-

rophysiological studies have shown cross-modal interactions between primary regions of

perceptual processing (see Ghazanfar & Schroeder, 2006 for review). To us such mutual

constraints between modalities are just as much examples of the fundamental principle of

mutual constraint satisfaction as the bidirectional interactions between levels in a hierar-

chical perceptual system. Although several studies have argued that sensory integration

occurs in secondary sensory or association cortex (Bavelier & Neville, 2002; Jones &

Powell, 1970) or in frontal cortex (Rizzolatti, Riggio, Dascola, & Umlita, 1980), recent

evidence has pointed to the presence of top-down inputs from these association regions to

primary sensory cortices in audition (Cappe & Barone, 2005; Schroeder et al., 2001) and

vision (Falchier, Clavagnier, Barone, & Kennedy, 2002; Rockland & Ojima, 2003) as

well as direct input from auditory cortex to primary visual cortex (Falchier et al., 2002;

Hall & Lomber, 2008) and vice versa (Bizley & King, 2009). Physical projections from

auditory cortex terminating in area V1 have also been observed in the monkey (Falchier

et al., 2002; Rockland & Ojima, 2003) and in the adult cat (Hall & Lomber, 2008), sug-

gesting that these connections are not limited to early developmental stages. In addition,

evidence from multiunit recordings in the ferret has shown that roughly 20% of the neu-

rons in area A1 respond to visual stimulation (Bizley & King, 2009).

Overall, a growing body of evidence is challenging the idea that there is encapsulation

of sensory processing at the neural level (see Ghazanfar & Schroeder, 2006). Instead, the

evidence suggests that a highly interactive biological system enables the simultaneous use

of information across hierarchical levels from multiple modalities for spatial localization,

communication, and various social behaviors (Lewkowicz & Ghazanfar, 2009). This

interactive neural system implements cognitive processing that relies on the simultaneous,

coherent engagement of representations at many levels and within many modalities at the

same time—that is, processing that is distributed, parallel, and interactive.

7.2. Interactivity in the brain mechanisms of human language processing

Interactive processing has also been a key theme in research on human language pro-

cessing and reading. Much of this work has been conducted within the framework of the

“Triangle model” of single-word reading (Seidenberg & McClelland, 1989; and subse-

quent extensions), which can be viewed as a version of the interactive activation model

that relies on learned distributed representations rather than localist representations of

units at the orthographic, phonological, and semantic level. Here, we highlight the

interactive processing aspects of the framework as illustrated in Fig. 9, focusing on the
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timing and locus of mutual influences of phonology and orthography and of lexical

effects on phonological and orthographic processing. Note that in the triangle model

framework, bidirectional connections throughout the model are sensitive to lexical knowl-

edge as well as knowledge of the patterns of covariation between orthographic and pho-

nological representations. Specifically, the presentation of a visual or spoken word form

would induce bidirectional interactions among orthographic, phonological, and semantic

representations, leading to the prediction that lexical knowledge and spelling-sound con-

sistency would affect orthographic and phonological representations, at least in skilled

readers, once the relevant connections had become strengthened through experience.

Discussions of the neural basis of visual word recognition have focused heavily on the

role of a region of the left occipito-temporal cortex known as the Visual Word-Form

Area (VWFA; McCandliss, Cohen, & Dehaene, 2003; Dehaene, Cohen, Sigman, & Vinc-

kier, 2005). Some have argued that VWFA functions as an orthographic “input” lexicon,

a repository for visual forms of words (Kronbichler et al., 2004, 2007), while others have

contended that this region is prelexical in nature (Dehaene et al., 2005), with some possi-

ble hierarchical organization of orthographic representations in or near the VWFA. In an

interactive framework, a representation can be structured orthographically and still be

sensitive to lexical constraints and influences from other input modalities. That is, we can

consider the VWFA to be the approximate neural analog of the pool of units labeled

“orthography” in the triangle model, which primarily represent orthographic structure but

are also sensitive to interactive influences from other representations. A considerable

body of evidence supports the view that processing in this region is susceptible to

influences from other input modalities, including influences arising from tactile (Braille)

Fig. 9. The triangle model framework for single-word reading. Reprinted from fig. 1, p. 526, of Seidenberg

and McClelland (1989). Copyright © American Psychological Association, reprinted with permission.
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input for congenitally blind patients (Buchel, Price, Frackowiak, & Friston, 1998; Cohen

et al., 1997) for handwriting (Barton, Fox, Sekunova, & Iaria, 2010) and for auditory word

processing (Binder, Medler, Westbury, Liebenthal, & Buchanan, 2006; Cone, Burman,

Bitan, Bolger, & Booth, 2008; Desroches et al., 2010). As important, studies that have

looked at the influence of consistency between a word’s spelling and its sound have

revealed graded effects of consistency and frequency at the item level mirroring the behav-

ioral findings of consistency effects in naming (Bolger, Hornickel, Cone, Burman, &

Booth, 2008; Bolger, Minas, Burman, & Booth, 2008; Graves, Desai, Humphries, Seiden-

berg, & Binder, 2010). Consistent with predictions from the Triangle model (Harm, Mc-

Candliss, & Seidenberg, 2003), Bolger, Hornickel, et al. (2008) and Bolger, Minas, et al.

(2008) found that response to grapheme–phoneme consistency in the VWFA increased with

reading skill. These findings support the view that interactive processing becomes estab-

lished as reading skill becomes more and more automatic; this is captured in the triangle

model framework in terms of the strengthening of bidirectional connections between the

neurons participating in each of the three different types of representations with experience.

Neuroimaging studies of speech perception have also addressed the predictions of inter-

active models. Whereas accuracy of phonological perception is associated with the supe-

rior temporal cortex, decision time is associated with inferior frontal/insula cortex (Binder,

Liebenthal, Possing, Medler, & Ward, 2004) and anterior cingulate/medial frontal regions

of cortex (Grinband, Hirsch, & Ferrera, 2006; Grinband et al., 2011). Interactive models

predict that brain regions involved in phonological processing (e.g., posterior superior tem-

poral gyrus and Heschl’s gyrus in the superior temporal sulcus) should show effects of lex-

ical bias. In contrast, autonomous decision-level integration models predict that these

lexical bias effects should be limited to brain regions involved in decision-making and

response selection (e.g., inferior frontal gyrus and anterior cingulate gyrus). An fMRI

study (Myers & Blumstein, 2008; see also Guediche, Salvata, & Blumstein, 2013) found

that the lexical bias on categorization of ambiguous phonemes was associated with

increased activation in the superior temporal gyrus. This region is also activated during

auditory hallucinations of voices in patient populations (Dierks et al., 1999) and imagined

speech of others in healthy individuals (McGuire, Silbersweig, & Frith, 1996).

Electrophysiological measures have provided key evidence that lexical and consistency

effects occur early, during perceptual and/or lexical processing, rather than during a post-

perceptual decision stage, in both visual and auditory modalities. For example, rhyming

effects on visual processing of orthographically dissimilar words have been detected

around 260 ms after stimulus onset (Kramer & Donchin, 1987), and syllable effects in

visual word processing have been shown at around 250–350 ms (Ashby & Martin, 2008;

Carreiras, Ferrand, Grainger, & Perea, 2005). Consistency effects in auditory lexical deci-

sion tasks (Perre, Midgley, & Ziegler, 2009; Perre & Ziegler, 2008) and semantic catego-

rization tasks (Pattamadilok, Perre, Dufau, & Ziegler, 2008;Pattamadilok, Morais, De

Vylder, Ventura, & Kolinsky, 2009) have been shown to occur in ERP roughly 300–
350 ms post-stimulus and time locked to the point of inconsistency. Findings from MEG

imaging, which provides greater spatial resolution, have localized the early rhyming

effects in visual tasks to the left occipito-temporal region (Wilson, Leuthold, Lewis,
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Georgopoulos, & Pardo, 2005). In related work, van Linden and colleagues (van Linden,

Stekelenburg, Tuomainen, & Vroomen, 2007) found that lexical context induced an early,

perceptually based mismatch negativity effect, suggesting that lexical information directly

affected perceptual processing stages.

Although neuron-level neuroanatomical precision is difficult to achieve in the domain of

human language processing, recent studies combining multiple imaging modalities show

promise for increasing both spatial and temporal precision. A study combining MEG and

electro-encephalography (EEG) with anatomical MRI (Gow, Segawa, Ahlfors, & Lin, 2008)

found reactivation of posterior superior temporal gyrus following activation of a region

associated with lexical processing (supramarginal gyrus). An ERP study (Molinaro, Du~na-
beitia, Mar�ın-Guti�errez, & Carreiras, 2010) found that during an early period (180–220 ms

after onset) letter-like numbers in word contexts (e.g., M4T3R14L) were processed more

like numbers than letters, but only slightly later (250–300 ms after onset) this pattern

reversed and letter-like numbers were processed more like letters than numbers. A com-

bined ERP-MEG study (Sohoglu, Peelle, Carlyon, & Davis, 2012) replicated the facilitative

effect of prior knowledge (written text) on perceptual clarity of degraded speech and found

that this effect was reflected in inferior frontal gyrus activity before superior temporal gyrus

activity, consistent with top-down feedback from higher level processing in the inferior

frontal gyrus modulating perceptual processing in the superior temporal gyrus.

The exact nature, timing, and location of lexical and consistency effects in visual and

auditory word perception remains subject to a range of interpretations, and a considerable

body of ongoing work is addressing these issues. One very general open question is

whether top-down and between-modality influences should be viewed as an additional

sources of constraint on interpretation, as in the interactive activation framework, or

whether, instead, top-down signals should be viewed as predictions that are compared with

bottom-up signals, generating error signals that then drive learning mechanisms (Friston,

2008; Mumford, 1992; Rao & Ballard, 1999). A further question is the interplay between

such influences and synchronization of neural activity within and across brain regions (see

Gotts, Chow, & Martin, 2012 and commentaries therein for a recent discussion).

There appears to be little doubt that top-down influences affect relatively early, modal-

ity-specific processing areas, both in language processing and in other tasks. Brain

regions tend to be connected bidirectionally and there is strong neurophysiological evi-

dence that these bidirectional connections implement interactive activation in perceptual

and conceptual processes (Ghuman, Bar, Dobbins, & Schnyer, 2008; Gotts et al., 2012).

Specifically within the domain of language processing, the neural evidence indicates that

feedback and audio-visual interactions directly influence perceptual processing, consistent

with interactive models.

8. Summary and future directions

Over the course of this article, we have laid out the case for interactive activation and

mutual constraint satisfaction in perception and cognition. We have focused primarily on
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visual and spoken word recognition, the target phenomena first addressed by IA models,

but we have also considered other applications of interactive approaches. We have

explored computational theory-level considerations and neuroscience evidence as well as

evidence on the role of context in perception as revealed by behavioral studies.

We have argued that interactive activation addresses key computational challenges fac-

ing perceptual systems and is consistent with a wide range of evidence, including behav-

ioral and neuroscience evidence on the mechanisms of perception and language

processing in the brain. Overall, it appears that both computational analyses and the

behavioral and neuroscience evidence are consistent with the IA hypothesis.

While the computational and empirical considerations seem strongly to support an

interactive perspective, there are several important challenges requiring future investiga-

tion within an interactive activation framework.

Dynamics of perception in probabilistically grounded interactive activation models. The

IA hypothesis states that processing approaches the ideal of achieving optimal results in

real time as information becomes available. A good deal of experimental work has been

carried out showing that participants in perceptual and language-processing tasks use all

of the available information and start to show sensitivity to it within a third of a second

of its arrival at the sensory surface. Simulations of such findings have been provided

using the original TRACE model and related, simple Luce-ratio-based models (Spivey &

Tanenhaus, 1998). Future work should explore these issues in more detail, relying on

probabilistically grounded models like the multinomial IA model.

We have begun to explore a related issue in the multinomial IA model (Khaitan &

McClelland, 2010), namely, the build-up of performance—and of contextual influence on

performance—as participants are given increasing amounts of exposure to target informa-

tion (Massaro & Klitzke, 1979). This issue is important because Massaro and Cohen

(1991) specifically posed it as a challenge to the interactive activation model that was not

fully addressed by the stochastic version of the model presented in McClelland (1991).

Specifically, if input feature information builds up over time according to the empirical

function proposed by Massaro and Cohen (1991), would the processing machinery pro-

vided by the multinomial IA model show the right pattern of enhancement for perception

of letters in words compared to letters in random sequences? The simulation reported in

Khaitan and McClelland (2010) suggests that the answer to this question may be yes, but

the simulation is preliminary, and more work is needed.

Adaptive optimization to task and instructional constraints. An important topic for fur-

ther research is the adaptive optimization of processing in interactive activation models in

response to task and instructional constraints. There are a number of important open

issues here. First, as we have noted, participants do adjust the extent to which they show

lexical influences on processing as a function of changes in the probability that stimulus

items will be words or non-words. Such influences are easily incorporated into Bayesian

models (Rumelhart & Siple, 1974 consider this issue extensively) and have also been

incorporated into the original IA and TRACE models (Mirman et al., 2008). It appears,
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however, that there are limits on the extent to which participants can actually suspend the

use of their knowledge of lexical constraints on speech sound identity. For example, in

one recent study (Hawthorne, 2011) participants showed lexical influences on perception

of speech sounds whether or not they were informed that each sound occurred equally

often in each of two possible contexts, as one might expect if the knowledge of lexical

constraints were hard wired into connections among the neurons involved in naturalistic

language processing, and these same neurons and connections were relied upon indepen-

dent of the instructional manipulation. There are empirical and theoretical questions here

that deserve further consideration.

Incorporating learning and distributed representations in interactive models of percep-
tion. Research on interactive activation models of perception pre-dated the development

of powerful learning models for parallel distributed processing systems that were devel-

oped in the mid-1980s. Models using learned distributed representations have been suc-

cessful in addressing a wide range of aspects of linguistic and semantic processing, and

we look forward to full integration of learning and distributed representation in further

explorations of perceptual processing tasks. Recent developments of fast and powerful

learning methods for deep belief networks (Hinton, 2014; this issue) should facilitate

these explorations.

Meeting the computational challenges facing perceptual and cognitive systems in natural-
istic perceptual contexts. The IA and TRACE models that have been the focus of our

investigations here finesse many challenges facing the development of models that will

be robust and efficient enough to succeed in matching human capabilities in naturalistic

perceptual situations. These challenges are the focus of intense research among a wide

range of researchers in the fields of AI, machine vision, and machine learning. Much of

this work builds on neural network ideas with origins in IA models and precursors of

such models, and of course a great deal of this work incorporates explicit probabilistic in-

ferencing mechanisms. In turn, much of this work should feed back into the effort to

understand human perceptual processing mechanisms, as they are instantiated in the neu-

ral mechanisms provided by the brain. The further development of interactive activation

models of perception will benefit greatly from these developments.

Fully grounding IA models in the neural mechanisms provided by the brain. The final

challenge we will mention is the goal of understanding exactly how the IA process is

implemented in the neural machinery in the brain. Neurons and their properties have been

a source of inspiration in the development of these models, and evidence from neurosci-

ence supports the view that perceptual processing in the brain is an IA-like process, as

we have reviewed. Building an integrated understanding of the way in which neural

mechanisms give rise to perception is a goal that many researchers strive for; if the IA

hypothesis is correct, such an integrated understanding will rely on principles of interac-

tive activation.
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Notes

1. Although the original IA model employed between-level inhibition as well as excita-

tion, the TRACE model and other subsequent models used excitatory-only connec-

tions between levels with inhibition restricted to within-level interactions. The

primary reason for eliminating between-level inhibition was to allow even a poorly

fitting interpretation to become active when there is no better interpretation. We will

return to this issue in discussing the multinomial interactive activation model below.

2. For simplicity, the IA and TRACE models assumed discrete slots for letters and

phonemes, although TRACE assumed some spread of phonological features pro-

ducing overlap between adjacent slots. Recent evidence reviewed in Norris (2013)

suggests that both models should allow for positional uncertainty, so that letters

near the appropriate position can still activate the corresponding word-level unit

(e.g., TRCK should activate the word TRUCK much more than TRXY does).

3. Presentations of the original IA model did not stress that it contained separate units

for the presence and for the absence of each possible feature. Fig. 2 makes this fea-

ture of the model more explicit than in earlier diagrams of the model.

4. Note that the p(w) values used in the model are not raw word frequencies; instead,

as in the original IA model, these probabilities are compressed (McClelland &

Rumelhart, 1981). Without this compression, there would be a much larger range

of variation in the posterior probabilities shown in Fig. 6. The compression of the

p(w) values amounts to an (implicit) “assumption” about stimulus frequency incor-

porated in the model. The bias terms on the word units are the natural logarithms

of these already-compressed p(w) values.
5. This result follows from the fact that the sum of the logarithms of a set of quanti-

ties is equal to the logarithm of the product of the quantities, for example,

ln(a)+ln(b) = ln(ab), and the fact that e to the log of a quantity is simply the quan-

tity itself, that is, eln x = x. We also rely on the fact that ex/T = (ex)1/T.
6. The complete Bayes’ formula would contain factors for the prior probabilities of

letters. However, in the generative model, letters do not have independent prior

probabilities; instead, letter probabilities depend on the word level, whose influence

on the letter level is incorporated on the second and subsequent updates of the units

at the letter level. On the first update, letters are treated as equally probable. Such

a constant factor would cancel out and is therefore not expressed in the equation.

J. L. McClelland et al. / Cognitive Science (2014) 43



7. It should be noted here that changing the temperature parameter is equivalent to

scaling the weights and biases in the model, and these in turn represent relative

probabilities and relative conditional probabilities in the generative model. Thus, a

lower temperature corresponds to assuming less randomness in the generative

model.

8. If the model was required to read out from the word level, it would always produce

a word response, but the same would have been true of the original IA model.

When asked to report all four letters, human observers do not always report words

when pseudowords are presented (McClelland & Johnston, 1977). Further research

is needed to determine if the pattern of whole report responses obtained with

pseudowords can be explained by the MIA model, assuming readout from the four-

letter positions.

9. In Massaro’s model (Massaro, 1989), the relative stimulus support for r, called sr,
corresponds to p(s|r)/(p(s|r)+p(s|l)); and the relative context support cr corre-

sponds to p(r|c)/(p(r|c)+p(l|c)). The stimulus and context support for l are defined

similarly. Since sr + sl = 1, sl can be replaced by 1 � sr; similarly, cl can

be replaced by 1 � cr. Thus, for the two alternative case his model then becomes

p(r|s,c) = sr cr / (sr cr + (1 � sr)(1 � cr)). Participants then choose the r response

with a probability equal to the resulting estimate of p(r|s,c).
10. As Pearl (1982) showed, it is possible to keep a record of the information passed

up from each position to a higher level, and then cancel this back out of the top-

down signal broadcast down to all lower levels from above, and a precursor of this

idea was described in Rumelhart (1977). We view Pearl’s proposal as an alternative

implementation of an interactive model of perception; a comparison of this

approach to the MIA model is provided in McClelland (2013).
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