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 1. Preliminaries 
A broad distinction can be drawn in psycholinguistics between research focused on how input 
signals activate representations of linguistic forms, and how linguistic forms are used to access 
or construct conceptual representations. Words lie at the junction, but do more than simply 
provide an interface between signals and higher-level structures. Theories in psycholinguistics 
(e.g., MacDonald, Pearlmutter, & Seidenberg, 1994; Trueswell & Tanenhaus, 1994) and 
linguistics (e.g., Pustejovsky, 1995) have ascribed increasing syntactic and semantic knowledge 
and function to the lexical level. This makes theories of spoken word recognition (SWR) key in 
explaining not just how word forms are recognized, but also in understanding levels upstream 
(sublexical) and downstream (conceptual, sentential, etc.). While theories of SWR typically take 
the narrow focus of mapping from phonemes to sound patterns of words, a growing body of 
empirical results (consistent with the increasing role of the lexicon in linguistic and 
psycholinguistic theory) suggests that SWR is not so neatly compartmentalized. For example, 
subphonemic details in the speech signal affect lexical activation (Andruski, Blumstein, & 
Burton, 1994; Davis, Marslen-Wilson, & Gaskell, 2002; Salverda, Dahan, & McQueen, 2003), 
revealing that sublexical details are preserved at least to the level of lexical access. Lexical 
context appears to influence sublexical perception directly (Elman & McClelland, 1988; Samuel, 
1981; but see discussion of controversies on this point below), and syntactic context similarly 
influences lexical activation (Shillcock & Bard, 1993; van Berkum, Brown, Zwitserlood, 
Kooijman, & Hagoort, 2005).  
 Determining what representations are active during any cognitive process is difficult, 
since many of those representations may no longer be active by the end of the process. The 
problem is compounded by the nature of the speech signal. The transient acoustic events that 
make up spoken words must be mapped rapidly onto words in memory, within the limits of 
echoic and working memory. SWR is further complicated by the many-to-many mapping 
between acoustics and linguistic categories (Fowler & Magnuson, this volume) and the absence 
of invariant cues to word boundaries (Samuel & Sumner, this volume), placing speech 
perception and SWR among the most challenging problems in cognitive science.  

In tackling these problems, theories of SWR generally agree on three principles (Dahan 
& Magnuson, 2006). First, as a word is heard, multiple lexical representations are activated. 
Second, activation depends on degree of fit between a lexical item and the incoming speech, and 
prior probability (frequency of occurrence). Third, recognition is guided by competition among 
activated representations. Each principle is quite general, and allows for considerable variation in 
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specifics. Theories differ particularly in their similarity metrics and/or bottom-up activation 
mechanisms (which determine degree of fit), information flow (e.g., only bottom-up or top-down 
as well), and the nature of the competition mechanisms they assume.  

Different assumptions about these principles lead to different predictions about word 
recognition. Current theories are generally guided by computational models, which minimally 
include mathematical, verbal-algorithmic, and simulation models.i In the next section, we will 
give one example of each of the first two types, and then review several simulation models, 
introducing additional distinctions among model types as needed. Our review necessarily will be 
brief and selective, with models chosen to illustrate approaches and principles. For more 
comprehensive reviews, see Protopapas (1999) and Ellis and Humphreys (1999). We will then 
review a recent debate in SWR that hinges on subtle predictions that follow from computational 
models but have proved elusive in empirical tests. The debate provides useful illustrations of 
principles of model testing and comparison. We will close the chapter with a discussion of what 
we see as the most pressing issues for making progress in theories of SWR, and the most 
promising current modeling approaches. 

 2. A selective review of SWR models 
2.1. Mathematical models 

The most influential mathematical model of SWR is the Neighborhood Activation Model 
(NAM; Luce, 1986; Luce & Pisoni, 1998), which crystallizes the three key SWR principles 
reviewed above into a simple, but powerful, mathematical form. NAM is also the only SWR 
model able to generate item-specific and pair-wise competition predictions for thousands of 
words easily. Luce and Pisoni discuss potential connections with simulation models like TRACE 
(see Section 2.3) and have proposed PARSYN as a simulating instantiation of NAM (Luce, 
Goldinger, Auer, & Vitevitch, 2000), but NAM itself does not specify any algorithms or 
mechanisms. Rather, it combines general principles and constraints on SWR into a mathematical 
form that predicts relative ease of lexical access.ii  

This simplicity also places NAM at the fundamentalist end of a fundamentalist-realist 
continuum of models (Kello & Plaut, 2003). Fundamentalist models isolate key theoretical 
assumptions and implement them with as little baggage as possible, with the goal of making 
transparent tests of the assumptions. Realist models build in as much detail as possible, with the 
goal of accounting for a broad and deep range of phenomena, often with the goal of seeing 
whether the complexity of the model engenders emergence of unexpected (positive or negative) 
behavior. 

How does NAM formalize the three core principles of SWR? First, it addresses multiple 
activation and similarity with a global similarity metric that specifies which words will be 
activated as a word is heard, and how strongly they will be activated. The most familiar NAM 
metric uses a one-phoneme "DAS" (deletion, addition, or substitution) threshold: words are 
neighbors if they differ by no more than one phoneme, whether by deletion (cat: at), addition 
(cat: scat, cast, cattle), or substitution (cat: bat, cot, cab). More subtle metrics based on 
empirical measures of sublexical similarity (e.g., perceptual confusion data) can also be used to 
compute pair-wise positional similarity over all words in the lexicon (where overall similarity of 
two words is the product of phoneme-by-phoneme similarities). While the more complex metrics 
do make distinct predictions, such as the priming of veer by bull (given high similarity at each 
phoneme; Luce et al., 2000), the two metrics make sufficiently similar predictions that the one-
phoneme metric is most frequently used.  
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Once the neighborhood of a word is defined (or computed, in the case of graded 
similarity metrics), a word's frequency-weighted neighborhood probability can be computed. We 
present a slightly modified version of the Luce and Pisoni (1998) form in Equation 1, where 
FWNPt is the frequency-weighted neighborhood probability of target word t, ft is the prior 
probability (typically, the log frequency of occurrence per million words in a corpus) of a target 
word t, and st is the similarity of the target to itself (which may approach but not equal 1.0 in 
some versions of the metric -- e.g., when similarity is based on phonemic confusion 
probabilities). In the denominator, for every word, w, in the lexicon (including the target), fw is 
the frequency of word w, and swt is the similarity of word w with target t. Note that if a threshold 
rule (like the DAS rule) is not used to define neighbors, the set of potential neighbors includes 
every word in the lexicon, though many words will have similarities to t near 0. Note also that 
denominator includes the target, t; even when a threshold is used, t will be a neighbor of itself. 

� 

FWNPt =
ftst

fwswt∑  (1) 

This is the most general form of the rule. When the DAS definition of neighbor is used, 
we can simplify further by dropping the s terms, as items either have similarity of 1.0 (meets 
DAS definition of neighbor) or 0.0 (not a DAS neighbor).  

NAM addresses prior probability by weighting each neighbor in the metric by its log 
frequency. NAM addresses competition indirectly, with a choice rule that approximates lexical 
competition. Ease of recognition of a target word is predicted by the ratio of its log frequency to 
the sum of all other words’ similarities to the target (0 or 1 for the DAS rule) weighted by each 
item's log frequency. Since neighborhood density (summed frequency-weighted neighbor 
similarities) includes the target (with self-similarity of 1), frequency-weighted neighborhood 
probability can be stated more simply as the proportion of the neighborhood frequency 
contributed by the target word. NAM predicts that if two words are matched on neighborhood, 
the one with higher frequency will be recognized more quickly, because it contributes a larger 
portion of its neighborhood density. If two words are matched on frequency, the one with lower 
neighborhood density will be recognized more quickly, again because that word’s frequency 
represents a greater proportion of its neighborhood density. Note that the temporal grain size of 
the model is lexical – it simply predicts the recognition facility of entire words, and does not 
predict sublexical processing details.  

This simple model is surprisingly powerful. NAM accounts for about 15% of the variance 
(beyond word frequency alone) in tasks like lexical decision and naming (Luce, 1986; Luce & 
Pisoni, 1998). The next best predictor is frequency alone – which only accounts for about 5% of 
the variance. Significant effects are commonly found in factorial manipulations of neighborhood 
density, and again, the complex similarity metric makes surprising pair-wise priming predictions 
that have been borne out empirically (Luce et al., 2000). NAM has had a large impact on theories 
and the practice of SWR research (studies of SWR now commonly control neighborhood 
density). 

NAM can be considered a general framework for choice models of SWR, or as a specific, 
testable model when paired with a particular metric. While the model is strongly associated with 
the metrics used by Luce and colleagues and the competitor set predictions that follow, using 
other similarity metrics in the NAM framework would be an excellent strategy for making 
further progress on identifying general constraints on SWR. 
 
2.2. Verbal-algorithmic models 
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In verbal-algorithmic models, predictions that follow from theoretical assumptions are 
described as an ordered series of processes or computations. The preeminent example in SWR is 
the Cohort Model developed by Marslen-Wilson and colleagues (Marslen-Wilson & Tyler, 1980; 
Marslen-Wilson & Welsh, 1978). The Cohort Model illustrates the power of a well-specified 
verbal-algorithmic model, as it makes many testable predictions and paved the way for the 
simulation models we describe next. Cohort differs from NAM in three key ways. First, of 
course, it is a verbal-algorithmic formulation of processing mechanisms that could support SWR 
rather than a mathematical formulation of general principles. Second, algorithmic choices lead to 
a similarity metric that differs considerably from NAM’s. Third, it grapples explicitly with 
challenges of processing the speech signal over time, which allows it to generate qualitative 
time-course predictions and address segmentation of fluent speech. 

The original Cohort model was formulated to account for constraints that emerged 
primarily from experiments that revealed that SWR can occur remarkably early, prior to word 
offset, depending on possible competitors in the lexicon and higher-level context (Marslen-
Wilson & Welsh, 1978). Cohort built on the activation metaphors introduced in Morton’s (1969) 
Logogen theory and broke SWR into three stages: access (initial contact of bottom-up perceptual 
input with lexical representations), selection (winnowing the activation cohort), and integration 
(retrieving syntactic and semantic properties of a selected word and checking compatibility with 
higher levels of processing). The key theoretical constraints proposed for models of SWR were 
multiple access (all lexical items that are consistent with the input are activated), multiple 
assessment (the activated items are mapped onto the signal and top-down context in parallel), 
and real-time efficiency (i.e., a model should make optimal use of available information).  

This last constraint is central. Rather than waiting for the best candidate to emerge by 
simple matching of phonemes to lexical representations, the model posits active removal of 
words from the “recognition cohort” (the set of activated candidates). Thus, as a word like 
beaker is heard, initially all words beginning with /b/ would be activated. When /i/ is heard, all 
items beginning /bi/ (beaker, beetle, bead, etc.) remain in the cohort, but words that mismatch 
(baker, batch, etc.) are removed. In the original model, a top-down mismatch (incompatibilities 
between the syntactic or semantic properties of the word and sentential context) could also 
remove an item from the cohort, making “Cohort I” an interactive model; although the model 
assumed bottom-up priority (top-down knowledge did not prevent items from entering the word-
initial cohort, it only helped remove them), bottom-up processing was constrained directly by 
top-down knowledge.  

These principles combine to predict that words will often be recognized prior to word 
offset: assuming clear speech as input, a word will be recognized prior to its offset if there is a 
unique completion prior to word offset, or if context provides sufficient listener confidence in the 
as-yet incomplete word. A key innovation in the Cohort model was its implicit segmentation 
strategy. Utterance onset marks the onset of the first word in a series. As one word is recognized, 
its offset marks the onset of the next item. The basic principles of the Cohort model, and in 
particular, the notion that segmentation would emerge from continuous mapping of phonemes to 
words, have motivated a tremendous amount of research and insight into SWR, and paved the 
way for subsequent models. 

The model was revised slightly (Marslen-Wilson, 1987, 1989); “Cohort II” assumes 
selection must be autonomous from integration. This repairs problems with some predictions of 
Cohort I (e.g., predicting great difficulty recognizing words with low-probability relative to a 
context, such as, I put on my hiking beetle). The grain of input was increased from phonemic to 
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featural, to allow for a small degree of mismatch tolerance (about one feature), and activation 
was predicted to be related to goodness of fit weighted by word frequency.  

We will turn now to simulation models, which have largely followed from the empirical 
findings of Marslen-Wilson and colleagues, and the processing principles articulated in the 
Cohort model. 
 
2.3. Simulation models 

Mathematical and verbal models can generate specific predictions when their underlying 
assumptions can be combined in a straightforward way (e.g., when stages of processing are 
clearly ordered and information only flows forward), especially if they do not address the fine-
grained time course of lexical activation. When processing steps cannot be easily ordered or are 
expected to interact, or fine-grained time course predictions are desired, verbal models become 
unwieldy, and a mathematical model may be intractable or simply very difficult to derive 
analytically. In such cases, simulations with an implemented processing model (such as a neural 
network or production system) may be needed.  

Simulation presents advantages but also challenges. While all models make simplifying 
assumptions, implementing a model requires explicit choices about inputs, outputs, and details 
that may not be part of any underlying theory, but are needed to make a simulating model work. 
Grappling with such details in order to create a simulation model may identify incorrect or 
incompatible assumptions that appeared reasonable in a verbal or mathematical model, or may 
reveal that aspects of human behavior emerge in unanticipated ways from the model. In this 
section, we review a handful of simulation models chosen to illustrate important developments in 
SWR modeling. Specifically, we review two "hand-wired" and four learning models. Parameters 
in "hand-wired" models are set by a researcher on the basis of (e.g., phonetic) principle, intuition, 
trial-and-error, or algorithmic search. More important than where the parameters come from is 
the fact that they are fixed by the modeler for a given simulation rather than learned.  
 
2.3.1. Hand-wired models 

2.3.1.1. TRACE (McClelland & Elman, 1986iii) was the first major implemented 
processing model of speech perception and SWR.  It remains one of only a few realist (Kello & 
Plaut, 2003) models of SWR (see also Klatt, 1979, and Plaut & Kello, 1999, discussed below), 
and has by far the greatest depth and breadth of empirical coverage. TRACE extended the 
connectionist interactive activation framework (McClelland & Rumelhart, 1981) from reading to 
speech and was explicitly motivated by a desire to build and improve upon Cohort (McClelland 
& Elman, 1986, pp. 52-53). The model has three layers of units: featural, phonemic, and lexical 
(see schematic in Figure 1). Feature nodes are activated by input that roughly represents 
acoustic-phonetic properties of speech sounds by using 9 acoustic-phonetic feature continua, 
each represented by a bank of 7 units. Phoneme patterns are spread out over time, with features 
ramping on and off over 11 time steps (each corresponding to about 10 msecs). Because 
phonemes spread over many steps, but phoneme centers are only 6 steps apart, the input includes 
a coarse analog of coarticulation: on either side of a phoneme center, information about the 
current phoneme is added to that for the preceding or following segment, making the pattern for 
each phoneme context-dependent.  
 Feature nodes send activation forward to the phoneme layer, which consists of banks of 
phoneme templates aligned at multiple time slices (see more detailed schematic in Figure 2). 
This reduplication of units allows TRACE to handle the temporal extent of speech input by 
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spatializing time. Phoneme templates are maximally activated by a specific feature pattern 
aligned with them in time. Temporally overlapping phoneme units compete by lateral inhibition, 
such that ambiguous inputs will partially activate multiple phoneme units. However, competition 
will generally lead to a clear “winner” for each phoneme in the input (i.e., a phoneme unit that is 
substantially more activated than any others for “its” stretch of time). 
 

 
Figure 1: Schematics of five of the model types reviewed in this section. TRACE and Merge use 
localist representations; Distributed Cohort and Plaut & Kello use distributed representations; 
SRNs can use either. 

 
The same scheme connects phonemes to words. Lexical templates are duplicated across 

time and are maximally activated when properly ordered phoneme units aligned with the 
template are maximally activated. Lexical units also compete with each other through lateral 
inhibition, with incomplete or ambiguous phoneme sequences partially activating multiple word 
units, and competition resolving ambiguity. A crucial feature of TRACE’s architecture is 
feedback connections from lexical units to their constituent phoneme units (phoneme-to-feature 
feedback is typically disabled to speed processing, McClelland & Elman, 1986, p. 23). This 
feedback makes TRACE interactive (higher levels influence their own sources of input) and is 
one of the most controversial aspects of the TRACE model (discussed below; for recent debate 
see McClelland, Mirman, & Holt, 2006; McQueen, Norris, & Cutler, 2006; Mirman, 
McClelland, & Holt, 2006a). 
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Figure 2: More detailed schematic of the TRACE model (adapted from Strauss et al., 2007) only 
showing four phonemes and two words. TRACE solves alignment and segmentation problems 
by reduplicating each word and phoneme node at multiple temporal alignments. Arrows stand for 
forward and backward connectivity (note the absence of phoneme-feature feedback, which is off 
by default in the model, but can be turned on). Nodes at low levels feed forward to larger units 
that contain them (e.g., featural patterns corresponding to voicing activate voiced phonemes, 
such as /b/; /b/ feeds forward to words that contain /b/), and nodes at higher levels feedback to 
the nodes from which they receive feedforward activation. Connections indicated with filled 
circles are inhibitory; nodes can inhibit other nodes at their own level (“lateral inhibition”) if 
they overlap with them temporally.  
 

TRACE differs from Cohort in that it eschews explicit consideration of mismatch or 
word boundaries, though it is implicitly sensitive to both. Activation in TRACE is based on 
continuous mapping of bottom-up matches to lexical representations. A bottom-up match to a 
lexical representation will send activation to that word even if there was an earlier mismatch 
(Allopenna, Magnuson, & Tanenhaus, 1998, capture this distinction with the terms alignment 
and continuous mapping models, where alignment models, such as Cohort, explicitly code 
mismatches relative to word onset). However, lateral inhibition makes the system sensitive to 
mismatches and, implicitly, to the position of the mismatch and details of the competition 
neighborhood. For example, an early mismatch is more penalizing than a late mismatch (given 
candle as input, nodes for candy or even camera or cabin will be activated more strongly than 
handle). This is because by the time the input overlaps with, e.g., a rhyme, items overlapping at 
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onset are already activated, and the rhyme must overcome lateral inhibition from the target and 
its onset cohort. Thus, the competitor set predicted by TRACE is intermediate between Cohort's 
and NAM's: onset overlap is an advantage, but items with initial mismatch may still be activated 
(an effect that is increased if there is uncertainty/noise in the input). Allopenna et al. (1998) 
found close fits between TRACE’s predictions and the time course of phonological competition 
in human SWR (see Section 3.3). 

TRACE depends on a fairly large set of parameters, such as the strength of bottom-up 
and top-down connections. Unlike most simulation models, where free parameters are fit to data, 
the TRACE parameters were fixed by McClelland and Elman, and have been used since then 
with only small changes. In the original paper, TRACE accounts for more than a dozen aspects 
of human speech perception and SWR, including categorical perception, segmentation of fluent, 
multi-word utterances, and lexical and phonotactic effects on phoneme recognition. Recent work 
has shown that TRACE also provides an excellent model of the fine-grained time course details 
of SWR (Allopenna et al., 1998; Dahan, Magnuson, & Tanenhaus, 2001; Dahan, Magnuson, 
Tanenhaus, & Hogan, 2001; Spivey, Grosjean, & Knoblich, 2005). McClelland (1991) made an 
important refinement to TRACE – adding intrinsic noise – that allowed it to account properly for 
joint effects of context and stimulus (see Section 4.2). 
 Two aspects of TRACE have fueled the development of alternative models. The first is 
that the strategy of reduplicating phoneme and word templates to solve the temporal extent 
problem is arguably inelegant and implausible (cf. McClelland & Elman, 1986, p. 77). The 
second is the theoretical assumption of interaction (lexical-sublexical feedback, which we 
discuss in detail in Section 4).  

 
2.3.1.2. Shortlist/Merge. Shortlist (Norris, 1994; Norris, McQueen, & Cutler, 1995) is a 

fundamentalist simulation model that combines aspects of autonomous, feedforward models like 
Race (Cutler & Norris, 1979) and Cohort II with the competition dynamics of TRACE. A 
primary motivation in the development of this model was to keep positive characteristics of 
TRACE (e.g., competition dynamics) while avoiding weaknesses (e.g., the large number of 
nodes and connections due to reduplication of nodes over time). In the first stage of processing, 
bottom-up activation generates word candidates aligned with each phonemic step of input (the 
bottom-up activation was originally intended to be from a simple recurrent network (SRN); in 
practice, a dictionary lookup is used). The best candidates (up to 30) at each phonemic input step 
form the shortlist at that position. The items from all shortlists are wired together into an 
interactive-activation competition network as each new phoneme is heard, and items that overlap 
in time inhibit one another (see Figure 3).iv  

Shortlists are determined by match scores. Words get one point for every phonemic 
match, and -3 for every mismatch. To enter a shortlist, a word’s score must be among the top 30 
at a particular position. The mismatch penalty is so strong that the metric functions much like an 
alignment metric, allowing primarily onset-overlapping words into the shortlists. For example, 
when the input is cat, words beginning with /k/ are candidates at the first phoneme position when 
the first phoneme has been presented. When the second phoneme is presented, the shortlist at the 
first phoneme position is narrowed to words beginning /kae/, and words beginning with /ae/ are 
candidates at the second phoneme position. At the third phoneme, words beginning /kaet/ are 
candidates for the first phoneme shortlist, words beginning /aet/ are candidates for the second 
phoneme shortlist, and words beginning /t/ are candidates for the third phoneme shortlist. For 
words that rhyme or otherwise mismatch the input to enter the competitor set, the competition 
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neighborhood must be sparse and the input word must be long. That is, for an initial mismatch to 
be overcome, a rhyming word would have to match at the next four positions to arrive at a 
positive score and have some chance of entering the shortlist; e.g., given /kaet^lcg/ [catalog], 
/baet^l/ [battle] could enter the first-phoneme shortlist after /l/ is presented (assuming there were 
not already 30 words in that shortlist with match scores greater than one). A unique and crucial 
feature of Shortlist is the use of stress to constrain entry into shortlists (Norris et al., 1995; 
Norris, McQueen, Cutler, & Butterfield, 1997). This feature could (and should) be added to other 
models. 

 

 
 
Figure 3: Lexical competition in Shortlist. The shaded box at the bottom shows the input (“ship 
inkwell”). As the input is presented to the model, shortlists of items with positive match scores 
are constructed for each phoneme position (up to a maximum of 30 items per position). Arrows 
indicate aligned shortlists. For most positions in this figure, only a single item from the shortlist 
is shown. Larger subsets of the complete shortlists are shown at positions 1 and 4 (shaded 
groups). Items compete with other items that overlap with them at any position – including items 
in other shortlists. All inhibitory connections are shown. Only word pairs that do not overlap 
temporally do not have inhibitory connections. The shortlists shown are an idealization of what 
might be active at word offset, but are not taken directly from a simulation.  

 
This division of labor between lexical search and competition allows Shortlist to use 

many fewer connections than TRACE. Shortlist is sometimes claimed to require fewer nodes 
than TRACE as well, but this depends on the nature of the lexical search mechanism. If an SRN 
were used, the entire lexical search network would have to be replicated at each input step – 
since a new lexical search is generated for every input position as each phoneme is presented. 
This would result in at least the same number of lexical representations as in TRACE. However, 
since SRNs also predict a variety of lexical competition effects (Magnuson, Tanenhaus, & Aslin, 
2000), there would appear to be no need either for multiple SRNs aligned with each phoneme, 
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nor for an interactive activation network – a single SRN would simultaneously provide lexical 
search and competition.v 

Shortlist is a fundamentalist implementation of the theoretical principle that word 
recognition can be achieved efficiently with a modular division of labor between initial access 
and selection via competition. It is a fundamentalist model because it incorporates only details 
necessary for testing those primary assumptions. The Merge model (Norris, McQueen, & Cutler, 
2000) is a separate but related fundamentalist model that is also purely feedforward. Merge is 
consistent with the Shortlist framework, but was designed to examine whether lexical effects on 
phoneme decisions can be predicted without lexical-phonemic feedback, by adding post-lexical 
phoneme decision nodes (see Figure 1). Merge is meant to be roughly equivalent to the 
competition network of Shortlist, though it is greatly simplified. Merge has only been 
demonstrated with a few phonemes and words – up to 4 words and around 6 phonemes, 
depending on the simulation. While the input to the model has a subphonemic grain – phonemes 
ramp on over three time slices – the architecture does not encode temporal order. Word units 
have undifferentiated connections from phonemes, such that the inputs dog, god, odg, ogd, dgo, 
and gdo would all activate lexical units for dog or god equally well. All the same, the model 
qualitatively accounts for several results that previously had been thought to require interaction 
(see Section 4).  

New, Bayesian versions of Shortlist and Merge have been proposed (Shortlist B and 
Merge B; Norris & McQueen, 2008). Shortlist B resides at Marr's (1982) computational level of 
information processing theories, providing a description of a putatively optimal mapping from 
speech input to spoken words. It has an unusually fine grain for a computational level theory: 
diphone confusion probabilities from a gating task are used to construct phoneme likelihoods at a 
subsegmental grain. Those likelihoods are conditioned on lexical knowledge and potentially 
other context, but with the stipulation that the mechanism for combining these information 
sources must operate without feedback. This is not a stipulation commonly found in Bayesian 
approaches to perception; for example, Rao (2004, 2005) demonstrates how Bayesian inference 
can be implemented in a neural architecture employing feedback, affording optimal combination 
of top-down and bottom-up information sources, and close fits to behavioral data. Movellan & 
McClelland (2001) have also proven that the interactive activation framework of a model like 
TRACE can implement an optimal Bayesian process. Nonetheless, the approach taken with 
Shortlist B has the potential to generate extremely precise predictions and may lead the way to 
new approaches. We return to the controversial question of whether feedback occurs in speech 
perception and SWR in Section 4. 

 
2.3.2. Learning models 

2.3.2.1. Simple recurrent networks. SRNs (Elman, 1990) have been applied to SWR 
with limited coverage. A basic SRN consists of four sets of units: input, hidden, output and 
context (see Figure 1). There are feedforward connections from input to hidden units and from 
hidden to output units, as in a standard feedforward network. The context units contain an exact 
copy of the hidden units at the previous time step and are fully connected to the hidden units (or, 
equivalently, each hidden unit has a recurrent connection to all other hidden units with a delay of 
1 cycle). This innovation of recurrence, or feedback, provides the network with a limited 
potential memory for previous time steps. All of the connections (except hidden-context, which 
are one-to-one copy connections) are trained via backpropagation (where actual input is 
compared to observed output, and connections receive "blame" for the discrepancy based on how 
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much of the error they contributed, and their weights are changed proportionally; Rumelhart, 
Hinton, & Williams, 1986). A typical approach is to present a sequence of input vectors 
corresponding to a sequence of single phonemes and set the desired output to be the next 
phoneme or the current word. Depending on the nature of the training set and the size of the 
network, SRNs can develop sensitivity to fairly long stretches of context. While a common 
approach is to use a series of phonemes as input and localist lexical nodes as output, one can of 
course use distributed representations, or change the task to predicting the next phoneme, or even 
the previous, current, and next phonemes. These choices have a significant impact on what the 
model learns. 

Norris (1990) reported SRN simulations in which words in a small lexicon that 
overlapped at onset activated each other, but words that mismatched at onset and overlapped at 
offset did not, consistent with predictions of the Cohort model. Although this is a logical result, 
given the model has explicit access to ordered input, Magnuson et al. (2000) showed that it 
depends on the training regimen. If the model is given perfectly clear inputs and is trained until 
error rate asymptotes (the procedure followed by Norris), it will only show onset competition. If 
instead training continues only until every word in the lexicon is “recognized” correctly using a 
simple, minimal threshold (only about one-fifth as much training), the network exhibits rhyme 
effects, and will also more easily learn new words and be more tolerant of noisy inputs. 
Furthermore, early in training, the model shows roughly equivalent rhyme and cohort 
competition; adults learning novel neighborhoods of words show the same progression 
(Magnuson, Tanenhaus, Aslin, & Dahan, 2003). 

There is disagreement about the nature of the architecture of SRNs. Some claim that 
SRNs are not interactive (Cairns, Shillock, Chater, & Levy, 1995; Norris, 1990), since the input 
units are not influenced by the output level. Others disagree (e.g., Magnuson, McMurray, 
Tanenhaus, & Aslin, 2003a; McClelland et al., 2006) on the basis that recurrent connections 
allow context to have a direct influence on the earliest stage of processing (since feedback from 
context is mixed with bottom up input at the hidden unit level), even if the mechanism does not 
include feedback from explicitly lexical nodes. Specifically, the input to the hidden layer at each 
time step is the current bottom-up input and an exact copy of the hidden unit states from the 
previous time step; the latter are a the result of multiplying the previous input and context by the 
hidden unit weights, so the input includes the output of the first of the two feedforward 
transformations the model performs. 

In summary, SRNs avoid problems of TRACE (reduplicated units, inability to learn), and 
have the potential to be the basis of a “next generation” of models. Indeed, the next two models 
are based on this architecture. 
 

2.3.2.2. Distributed Cohort Model (DCM). Gaskell and Marslen-Wilson (1997) began 
pushing beyond the typical focus on sound form recognition by incorporating simultaneous 
semantic representations in their model. The input (binary phonetic features), hidden, and 
context layers followed standard SRN design. Their innovation was the use of two output layers: 
“phonology” (phonological form) and “lexical semantics” (an arbitrary, sparse binary vector; see 
Figure 1).  Gaskell and Marslen-Wilson (1999) argued that distributed representations and 
simultaneous activation of phonological and semantic dimensions of words provide 
fundamentally different ways of thinking about competition. In localist models such as TRACE, 
when the input supports two lexical items, there is explicit activation of both representations 
(different nodes at the lexical layer) and explicit competition between them (through mutually 
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inhibitory connections between the lexical units). In a distributed model, all items are 
represented with the same set of nodes; thus, both activation of and competition between 
multiple representations is implicit in the blend formed by the competing patterns.  

Gaskell and Marslen Wilson (2002) tested a prediction that follows from this 
conceptualization. Given a word fragment with semantically unrelated phonological completions 
(e.g., /kaept/ can begin captive or captain), the system can settle on a phonological pattern, but 
semantic activations will be a blend of the semantics for the phonological competitors. Thus, 
such a fragment should produce phonological (repetition) priming, but not semantic priming. In 
contrast, if few completions are possible (e.g., /garm/ can only be garment), the system will settle 
on single phonological and semantic patterns, and both phonological and semantic priming 
should be observed. This is precisely what Gaskell and Marslen-Wilson found.  

Gaskell and Marlsen-Wilson (2002) claimed that only a distributed model could account 
for such differential activation, though it appears DCM does so by virtue of including both 
phonological and semantic outputs, not by virtue of using distributed representations. If semantic 
representations were added to TRACE (e.g., if the phoneme layer simultaneously fed to the 
current lexical [phonological form] layer, and to a layer of semantic primitives that fed forward 
to a second lexical [semantic form] layer), it would make similar predictions: /kaept/ would 
activate mutually reinforcing units (captain and captive) on the phonological side, predicting 
strong phonological priming, but /kaept/ would activate disparate semantic representations, and 
predict weak semantic priming. Although localist and distributed models may not make 
conflicting predictions for currently known empirical results, there are strong arguments for 
preferring distributed to localist representations (Masson, 1995; Plaut, McClelland, Seidenberg, 
& Patterson, 1996) and the DCM represents a crucial step in that direction among SWR models.  
 

2.3.2.3. PK99. Plaut and Kello’s (1999) model is perhaps the most ambitious model of 
SWR yet proposed, and it is embedded within a comprehensive model of the development of 
speech production and speech comprehension (see Figure 1). The model learns to control a set of 
articulatory parameters to generate acoustics based on “adult” input (well-formed acoustics) and 
self-input (acoustic results of its own articulations). The acoustics are fairly close analogs of the 
speech signal (formant frequencies and transitions, frication, plosiveness, loudness, and the 
visual feature of jaw openness). The model learns a bi-directional mapping between acoustics 
and articulations and the mapping from both of these phonological representations to an arbitrary 
set of semantic patterns. The first report was extremely promising; in the domains tested, the 
model exhibited a range of desirable learning and processing behaviors. We hope development 
of this model continues, as we find that it provides the most promise for significant progress in 
modeling the development of speech production and comprehension.  
 

2.3.2.4. Adaptive Resonance Theory (ART). ART is a powerful connectionist learning 
framework. Inputs are initially mapped to early representations in a working memory stage. 
These then map (through bidirectional links, allowing feedback) to list chunks (combinations of 
lower-level units that have co-occurred over learning). Chunks of equal length inhibit each other 
and longer chunks “mask” smaller chunks that are contained within them. The framework has 
allowed for an impressive array of fundamentalist models (separate models for processing 
aspects of real speech [ARTSTREAM; Grossberg, Govindarajan, Wyse, & Cohen, 2004], 
phonological patterns [ARTPHONE, Grossberg, Boardman, & Cohen, 1997], and word 
segmentation [ARTWORD, Grossberg & Myers, 2000]), which suggests great promise for a 
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comprehensive, realist model, but such a model has not yet been reported (see also Goldinger & 
Azuma, 2003, for suggestions of how Goldinger's [1988] episodic lexicon model might be 
combined with the ART framework).  
 An intriguing aspect of ART's processing assumptions is that its version of top-down 
feedback cannot cause hallucinatory representations. A "2/3 rule" means that weak inputs (e.g., 
phonetic features corrupted by noise) can be strengthened once recognized by higher levels of 
processing, but completely absent inputs cannot be created from nothing. As we discuss below, a 
common criticism of feedback in TRACE is that it could make the system hallucinate (Norris et 
al., 2000). Although, in practice, misperception in TRACE seems generally similar to 
misperception in humans (Mirman, McClelland, & Holt, 2005) and the default TRACE 
parameters also give it strong, bottom-up priority, future modeling efforts might benefit from 
nonsymmetrical feedback rules such as those implemented in ART. 

 3. Evaluating and comparing models 
The recent history of SWR includes disagreements about whether particular models succeed or 
fail to account for various phenomena. There has been a salient absence of agreed upon 
principles for gauging model success or failure and for comparing models. We will argue that 
assessing success requires (1) clear linking hypotheses (links between the tasks performed by 
human subjects and the measurable properties of a model), and (2) attributing a success or failure 
to one of four levels (in decreasing order of importance): theory, implementation, parameters, or 
linking hypotheses. After introducing these issues, we will illustrate them with recent examples 
from the literature, and propose a set of candidate principles for assessing success and comparing 
models. These principles will frame a larger discussion of the feedback debate in Section 4.  
 
3.1. Linking hypotheses.  

The first question for comparing model behavior to human behavior is how to link 
properties of the model to the task performed by human subjects. The simplest approach is to 
look for qualitative similarity between a model and human data. For example, if lexical node 
activations correlate inversely with human response times and error rates in some task, it is 
reasonable to accept this as a model success, though this is a weak standard. One would do better 
to ask whether the model also provides good quantitative fits, and whether the fits are to 
condition means or individual items (e.g., does it predict errors on the correct class of items, or 
depending on the task, does it predict appropriate errors?). As the quantitative fit and grain of 
prediction increases, so should the standard for success. The standard can be strengthened further 
by examining how closely the model’s task resembles the human subjects’ task by establishing 
explicit linking hypotheses: concrete operational definitions tying features of model performance 
to human behaviors and tasks.  

Linking hypotheses typically receive little attention. However, one cannot say a model 
has failed unless one has first appropriately linked (a) model performance to human 
performance, (b) stimulus materials for human subjects to model materials, and (c) task 
constraints faced by humans to task constraints on models (e.g., through choice models).  
 
3.2. Model successes and failures: Levels of analysis.  

A model success or failure can be linked to one of four levels of decreasing importance: 
theory, implementation, parameters, or linking hypotheses. As we have just discussed, a “failure” 
or “success” due to improper linking hypotheses is not informative in the same way that an 
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experimental failure due to improper operational definitions is not informative. A failure at the 
level of theoretical assumptions is of greatest interest and holds the greatest possibility for 
progress (i.e., theory falsification). Before a model failure can be attributed to underlying 
theoretical assumptions, one must establish that the failure cannot be attributed to 
implementational details or to parameter settings. Implementational details include factors such 
as input representation, numbers of units in a neural network model, and details of processing 
dynamics (e.g., activation functions). Parameter settings play a critical role in simulating models, 
so, for example, if TRACE model simulations suggest competitors are inhibited too much, one 
cannot conclude that lateral inhibition is fundamentally flawed without testing different values of 
lexical inhibition, phoneme inhibition, bottom-up excitation, etc. Likewise, in a learning model, 
performance may change radically as a function of amount of training, as we mentioned above in 
our discussion of SRNs.   

Parameters are of particular importance, as there have been suggestions that a model as 
complex as TRACE should only be tested with minor deviations from the original parameter set. 
It is true that if different parameter sets are used to model different results, the model loses its 
generality -- the breadth of model successes cannot be attributed to underlying theoretical 
assumptions if each success requires different parameters. On the other hand, equating a model 
with a parameter set produces a similar problem: the model loses generality because the 
constraints of the parameter set are placed on a par with underlying theoretical assumptions. The 
simple alternative is not to limit model explorations to a “standard” parameter set, but the onus is 
on the modeler to test whether parameter changes needed for one phenomenon prevent the model 
from fitting results it was known to fit with the previous settings.vi  

We will now review a case where proper linking hypotheses provide insight into how 
task constraints shape behavior, and other cases where apparent model failures were actually due 
to improper linking hypotheses. Then we will turn to candidate principles for gauging success 
and comparing two models.  

 
3.3. Improving models with linking hypotheses.  

An interesting outcome of the use of simulation models is that for more than a decade, 
models made predictions at a finer grain than could be tested with standard psycholinguistic 
tasks. Models like TRACE (McClelland & Elman, 1986) make explicit predictions about the 
parallel activation of similar items and the time course of competition between them. For 
example, panel B of Figure 4 shows the complex pattern of activation and competition among 
TRACE’s lexical nodes for items like beaker, beetle, speaker, and carriage when the input is an 
item like beaker.  

Fine-grained lexical activation predictions began to be testable with the advent of the 
“visual world” eye-tracking paradigm (Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 
1995). In this paradigm, participants see multiple objects, and their eye movements are tracked 
as they follow spoken instructions to perform visually guided movements (e.g., “click on the 
beaker”). At any instant, participants can fixate only one object, but time course can be estimated 
from average fixation proportions over time. Panel A of Figure 4 shows data from Allopenna et 
al. (1998), who presented subjects with displays of four items like (on critical trials) beaker, 
beetle, speaker, and carriage, and examined fixations as subjects followed an instruction like 
click on the beaker. While there is an obviously strong qualitative fit between the data and the 
TRACE activations in panel B, Allopenna et al. established a closer link by linking model time 
to real time (by relating average phoneme duration in real speech materials to TRACE cycles per 
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phoneme) and, more importantly, by explicitly considering task constraints on human subjects 
(panel C). Subjects had four possible fixation outlets – the pictures on the screen. Allopenna et 
al. assumed that bottom-up lexical activation was not restricted to the displayed items, and based 
lexical activation on activation and competition in the entire TRACE lexicon. To incorporate the 
four-choice task constraint, they computed response probabilities based only on the activations 
of the four displayed items (using a variant of the Luce [1959] choice rule). With one free 
parameter (a multiplier used in the choice rulevii), this linking hypothesis greatly improves fit – 
by taking into account task constraints faced by human subjects, and simultaneously providing a 
“placeholder” model of the decision process (in the sense that it is obviously incomplete). It also 
suggests the possibility that TRACE activations may surprisingly closely approximate human 
lexical activations, as a very simple linking hypothesis taking task constraints into account 
results in high model-data fits (and this same linking hypothesis allows close fits of changes in 
looking behavior when cohort competitors are present or absent; Dahan, Magnuson, Tanenhaus, 
& Hogan, 2001).  

 

 
 
Figure 4: Comparison of eye tracking data (A), TRACE activations (B), and TRACE activations 
transformed into predicted response probabilities via explicit linking hypotheses (C). Adapted 
from Allopenna et al. (1998). 

 
Allopenna et al. calculated fit with r2 (do human and model proportions rise and fall 

together?) and root mean squared (RMS) error (are the actual values close?); r2 was high and 
RMS was low.viiiThe Allopenna et al. (1998) study provided partial resolution to a paradox 
having to do with similarity metrics (see Figure 5). In tasks like cross-modal semantic priming 
(e.g., Marslen-Wilson, 1990), there is strong evidence for onset (or “cohort”) competition (e.g., 
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hearing beaker primes insect, an associate of beetle, as beetle is strongly activated by 
phonological similarity to beaker and then activates insect via spreading semantic activation), 
but not for rhyme competition (beaker would not detectably prime stereo, an associate of 
speaker). In contrast, NAM’s similarity metric includes rhymes, and NAM provides the best 
available predictions for large sets of items (accounting for about 15% of the variance in SWR 
tasks). TRACE makes an intermediate prediction: onset competitors have an advantage because 
they receive substantial bottom-up activation without strong inhibition during the early part of 
the word. Rhymes are predicted to be activated, but to be at a significant disadvantage: by the 
time they have bottom-up support, the target and onset competitors are sending strong inhibition. 
Since the eye tracking data matches TRACE’s predictions so closely, this suggests that rhymes 
are activated, but more weakly than onset competitors. In cross-modal semantic priming, effects 
depend on phonologically-based activation spreading semantic activation. If rhyme activation is 
weak, it is not surprising that it is difficult to detect it in a mediated task. This case illustrates the 
symbiotic role of models; this level of resolution of the paradox could only have been attained by 
use of both quantitative empirical methods and an implemented model with an intervening 
linking hypothesis.  

 

 
 
Figure 5: The relationships of similarity metrics. Neighbors differ from each other by a single 
phoneme. Cohorts overlap at onset. Often, the overlap threshold is 200 msecs or approximately 
the first two phonemes. Less often, overlap in the first phoneme is the threshold (delineated by 
the dotted curve). The shaded region indicates items that are both neighbors and cohorts. TRACE 
predicts strongest activation for items that are both (2-phoneme overlap) cohorts and neighbors, 
then for (2-phoneme overlap) cohorts, then other neighbors, and little activation of items 
overlapping in a single onset phoneme (though greater activation is predicted for items like cut 
with a single mismatch versus cub with two mismatches). 

 
3.4. Linking to human materials and task constraints.  

Marslen-Wilson and Warren (1994) examined the role of lateral inhibition as a 
competition mechanism in TRACE by creating cross-spliced versions of a word like net that 
combined the initial CV of one word and the final C of another (e.g., the initial CV of neck plus 
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the final C of net) or the initial CV of a nonword (nep) and the final C of the word (net). These 
cross-spliced items included misleading coarticulatory (subcategorical) information about the 
final C. The baseline item was the initial CV of the target spliced onto the final C of another 
recording of the same word. The three conditions were labeled W1W1 (CV of one recording of 
net spliced onto the final C of another recording of net), W2W1 (neck + net), and N3W1 (nep + 
net). Marslen-Wilson and Warren’s simulations indicated that TRACE predicted the following 
response time pattern: W1W1 < N3W1 < W2W1 (with a large increase for W2W1), but human 
lexical decision data showed the pattern W1W1 < N3W1 ≈ W2W1. Marslen-Wilson and Warren 
attributed this discrepancy to lateral inhibition in TRACE, which they argued was too strong. 
Norris et al. (2000) ran simulations with Merge and a radically simplified interactive activation 
model (the 6-phoneme and 4-word Merge model with lexical feedback). Merge successfully 
predicted the response time pattern, as did their interactive analog, but only if it was made to 
cycle multiple times at each input step, effectively increasing the amount of inhibition that 
occurred prior to a decision. So Marslen-Wilson and Warren argued TRACE had too much 
competition, while Norris et al. argued that competition in TRACE was too slow.  

Dahan, Magnuson, Tanenhaus, and Hogan (2001) revisited this paradigm with eye 
tracking paired with TRACE simulations (see Magnuson, Dahan, & Tanenhaus, 2001, for more 
simulation details). Contrary to the lexical decision data, they found that fixation trajectories fit 
the pattern W1W1 < N3W1 < W2W1 (though the pattern was not as extreme as in the Marslen-
Wilson & Warren simulations). Magnuson et al. explained the discrepancy between the eye 
movement and lexical decision data by assuming a “yes” response could be triggered if the 
activation of either W1 or W2 reached a threshold. This would decrease average response time 
for W2W1, assuming the activation of W2 (neck) generates infrequent "yes" decisions. In 
separate lexical decision simulations based on eye movement time course and TRACE 
activations, there were ranges of parameters where this simple assumption leads to correct RT 
predictions (W1W1 < N3W1 ≈ W2W1). Contrary to the Marslen-Wilson and Warren and Norris 
et al. simulations, new TRACE simulations correctly predicted the data at a very fine grain. 
Dahan et al. explained the discrepancy between their TRACE simulations and Marslen-Wilson 
and Warren’s by deducing that the latter cross-spliced the TRACE stimuli much too late. Dahan 
et al. cross-spliced at the latest position possible that still led to the correct recognition of the 
intended final target. When the splicing is done as late as that reported by Marslen-Wilson and 
Warren, W2 is recognized rather than W1 given W2W1, and W2 is also recognized in a nonword 
condition (W2N1). If this happened with human subjects, the materials would be scrapped and 
replaced. This illustrates an important principle: the same care that is taken with materials for 
human subjects must be taken with model testing, in order to ensure adequate analogs between 
human and model conditions. The lexical decision simulations demonstrate that linking 
hypotheses can radically alter the apparent success or failure of a model.  
 
3.5. Intuition and logic vs. simulation.  

Consider the following predictions about TRACE and SWR in general. If word frequency 
has a pre-lexical locus, it should have a constant effect, detectable in both fast and slow word 
recognition responses. If frequency is a post-lexical decisional bias, frequency effects might 
disappear when subjects respond very quickly – before they hit the stage where frequency is 
integrated with lexical activation. Connine, Titone, and Wang (1993) found that indeed, 
frequency effects tend not to be detectable in fast responses and concluded that in a model like 
TRACE, such a result could only occur if frequency were a post-lexical bias. Dahan, Magnuson, 



Computational Models of SWR     18 

and Tanenhaus (2001) augmented TRACE with three frequency mechanisms: post-lexical 
(frequency applied in the choice rule rather than activations), resting levels (each word’s 
activation in the absence of input was proportional to frequency), and bottom-up connection 
strengths (phoneme-word connections were proportional to word frequency). The intuitive 
expectation was that the latter two would lead to similar predictions, and both would differ from 
the first. 

Dahan, Magnuson, & Tanenhaus (2001) compared time course predictions from TRACE 
to fine-grained time course measurements of frequency effects using eye tracking and the visual 
world paradigm. Empirically, human listeners showed a continuous influence of frequency that 
increased as more of a word was heard. Contrary to Connine et al.’s (1993) predictions, all three 
frequency-augmented versions of TRACE could fit the human fixation proportion data fairly 
well. Also surprisingly, the resting level and post-lexical mechanisms made virtually identical 
predictions, with a constant frequency influence. (To predict a late influence, the post-lexical 
account would require an additional parameter specifying when frequency should be applied.) 
The bottom-up connection weight mechanism predicted that the effect would be proportional to 
the amount of evidence, and provided the closest fit to the human data (especially the early time 
course). This mechanism would account for the Connine et al. results as a matter of task 
sensitivity: if you sample early in processing (with fast decisions) the magnitude of the frequency 
effect would be small. If the sensitivity of the task used were low (as it arguably is in lexical 
decision), a null result in early responses would not be surprising.  

This example demonstrates the value of simulations with complex models over intuition-
based expectations. Whenever possible, expectations should be verified with model simulations 
(see the Appendix for a list of tools that can be used for SWR simulations).  

 
3.6. Comparing models.  

Assuming two models account for overlapping phenomena, how should we compare 
them? First, if one appears to fail on some phenomena, the level of the failures must be 
identified, as we have just discussed. If the failures can be argued to be nontrivial, and all else is 
equal about the models, one has a basis for preferring the one with fewer failures. However, if all 
else is not equal (e.g., one model uses more realistic input or mechanisms, or one requires 
different parameter settings for different phenomena), one should prefer the model with greater 
realism, greater depth and breadth of coverage, or greater parameter stability. 

A recent trend in model analysis has been to distinguish between models that fit empirical 
data because of inherent properties of the model from models that fit only because of specific 
parameter settings. The standard test of model performance is to compare model and human 
behavioral data under one specific set of parameter values (or a small range of values). However, 
a model may be flexible enough to fit any possible data. Ideally, model behavior should be fairly 
stable over parameter changes and the optimal parameter range should account for a relatively 
large set of behavioral data (i.e., parameter changes should not be required for each new 
behavioral data pattern). 
 Pitt and his colleagues have recently developed a method (called Parameter Space 
Partitioning, or PSP) for comparing models based on their performance across their parameter 
space (Pitt, Kim, Navarro, & Myung, 2006). PSP examines the range of qualitative data patterns 
(e.g., an ordering of RTs in different conditions) that a model is capable of producing and 
computes a partitioned map of parameter space in which each partition corresponds to a 
qualitatively different data pattern generated by the model. This allows one to assess whether a 
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good fit by the model is due to intrinsic properties that follow from the theoretical assumptions 
of the model, or merely to particular parameter settings. To conclude that a model is reasonably 
constrained (and cannot predict arbitrary data patterns), the following should hold: (a) the model 
should produce relatively few data patterns across the parameter space; (b) the empirically 
observed pattern (human data) should correspond to a relatively large proportion of the 
parameter space; and (c) most other data patterns the model can produce should be similar to the 
empirically observed data pattern, with relatively smooth changes in patterns from partition to 
partition (rather than radically different patterns).  
 
Table 1: Candidate principles for evaluating and comparing models. 

Heuristics for Evaluating Models 
1. Model failures should not be accepted lightly 

a. If there is a qualitative failure, determine level of failure 
i. Theoretical (the underlying assumptions are wrong) 
ii. Implementation (an architectural or representational assumption is wrong) 
iii. Parameters (the model could fit the data with changes in parameters, but then previous 

model predictions must be verified with the new settings) 
iv. Linking hypotheses (are human and model materials and tasks comparable?) 

b. Failures of theory or implementation are strong evidence against a model 
c. Failures of parameters are strong evidence against a model only if new parameters are 

needed for each new data set 
d. Failures due to improper linking hypotheses are not model failures 

2. In gauging degree of success, strong standards should be preferred to weak standards 
a. Quantitative fits are stronger than qualitative fits 
b. Item-specific predictions are stronger than condition-specific predictions 
c. Specific error predictions are stronger than error rate predictions 
d. Constrained models (based on parameter space partitioning) are stronger than unconstrained 

models (i.e., models that can fit patterns quite different from human performance) 
Heuristics for Comparing Models 

The heuristics cannot be strictly ordered; for example, disparity in heuristic (c) might outweigh 
heuristics (a) and (b) 

In comparing two models: 
a. Prefer the model with greater breadth (range of phenomena it models) 
b. Prefer the model with greater depth (the model that can be held to a stronger standard of success, 

as in (2) above) 
c. Prefer the model with greater realism (e.g., a model with more realistic inputs or outputs) 
d. Prefer the more realistically constrained model (e.g., based on parameter space partitioning; see 

text) 
e. When all else is equal, apply Occam’s razor: prefer the simpler model 

 
Parameter space partitioning offers a powerful tool for testing and comparing models. 

However, its results are only as good as the characterizations of models and problems it is given. 
For example, PSP is extremely computationally intensive, which limits the complexity of models 
to which it can be applied. When Pitt et al. set out to compare the TRACE and Merge models, 
they used a “toy” implementation of TRACE like that used by Norris et al. (2000) (with 
phonemic input and only a subset of TRACE’s phonemes, a very small lexicon, and no ability to 
represent temporal order). This implementation might better be characterized as an extreme 
fundamentalist version of an interactive model, as it has little in common with TRACE aside 
from feedback. Similarly, they focused on tests of lexically-mediated phoneme inhibition 
(reviewed in section 4.2, below), but based the human behavioral standards on a report by 
Frauenfelder, Segui, and Dijkstra (1990), which has several problems (Mirman et al., 2005; see 
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Section 4.2), thus undermining their model analysis. Nonetheless, if candidate models are 
correctly implemented and human performance is correctly characterized, global qualitative 
model evaluation approaches such as PSP can offer important new insights into processes 
underlying SWR.ix  

Conclusions. Currently, there are no generally agreed upon principles for evaluating 
individual models or comparing two models. Table 1 lists a candidate set of heuristics for model 
evaluation and comparison (Jacobs & Grainger, 1994, provide a more detailed set of principles). 
However, comparing two models is more difficult than one might expect, especially if they differ 
in realism and empirical coverage. To illustrate this, we will review a currently central debate in 
SWR, as an example of how model comparison takes place in the literature. 

 4. The feedback debate 
Proponents of interaction in SWR (feedback connections from lexical to sublexical 
representations) argue that feedback (a) is a logical way to account for the many lexical effects 
on sublexical tasks that have been reported in SWR (for examples, see McClelland et al., 2006, 
and Mirman et al., 2006a), (b) makes a model robust to external or internal noise, and (c) 
provides an implicit representation of sublexical prior probability at multiple scales (e.g., 
biphone, triphone, … n-phone). Proponents of autonomous architectures – those with only 
feedforward connections – argue (a) feedback is unnecessary to account for lexical effects, (b) it 
cannot improve recognition, and worse, (c) feedback precludes truly veridical perception and 
predicts perceptual hallucination.  

Proponents of the autonomous view have argued against feedback in two ways. First, 
they argued that all observed lexical effects on sublexical tasks can be explained by post-lexical 
integration of lexical and sublexical information (Norris et al., 2000). More recently, Norris and 
McQueen (2008) have argued that lexical and other contexts should influence word recognition 
under certain conditions, but only by means of a Bayesian decision process that has pre-
perceptual access to context-conditioned probabilities (via an as-yet unspecified mechanism). 
What is required to falsify the autonomous position is empirical data showing lexical influence 
on pre-decisional sublexical processing. This has turned out to be a nontrivial enterprise in terms 
of developing experimental paradigms that proponents of both views would find convincing (for 
discussion see Dahan & Magnuson, 2006; McClelland et al., 2006; McQueen et al., 2006). Here, 
we will focus on model-specific issues that have been important in this debate.  

 
4.1. What good can feedback do?  

Norris et al. (2000; also Norris & McQueen, 2008) assert that feedback cannot possibly 
aid recognition. It can neither speed processing nor improve accuracy. Since there is no way to 
increase the information available in the signal, a system could not do better than simply 
activating the word with the best bottom-up fit to the signal. One piece of evidence they cite as 
support comes from TRACE simulations (Frauenfelder & Peeters, 1998; FP98) in which the 
usefulness of feedback was studied by comparing performance with feedback on and off. For the 
21 words tested, about half were recognized more quickly with feedback, and about half were 
recognized more quickly without feedback. Thus, even in TRACE, the flagship interactive 
model, feedback seemed not to improve recognition. 

Magnuson, Strauss, and Harris (2005) revisited this result, with three motivations. First, 
the general argument about the usefulness of feedback can be challenged on logical grounds 
(since, for example, words provide an implicit coding of prior probability for sublexical 
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phoneme sequences). Second, the FP98 simulations do not address a central motivation for 
feedback in interactive systems: feedback makes a system robust against internal or external 
noise. That is, feedback is useful because it affords context sensitivity, by implicitly coding prior 
probabilities of causes (phonemes, words, etc.), which can be especially useful given uncertain 
input. Given a sequence of phonemes including noise or ambiguity, the system could perform 
more quickly and/or accurately if it allowed context (lexical, syntactic, discourse, etc.) to help 
disambiguate the input as soon as possible. Third, the FP98 simulations only used a small set of 
words with particular properties (7 phonemes long, with a uniqueness point at the fourth 
segment). These were chosen for other simulations presented in the same chapter, but are not 
representative of the lexicon.  

Magnuson et al. tested performance with and without feedback on a large (901-word) 
lexicon with several levels of noise added to the input. At every level of added noise, average 
accuracy and recognition time were better with feedback on. Without noise, nearly 75% of the 
lexical items were recognized more quickly with feedback on. Cases where words were 
recognized more quickly without feedback resulted from complex neighborhood characteristics; 
however, when noise was added, feedback preserved accuracy even for these items.  

Another benefit of feedback is that it allows top-down knowledge to guide tuning or 
recalibration of the perceptual system when there are systematic changes in the input; for 
example, adjusting to a speaker with an unfamiliar accent. There is strong behavioral evidence 
that listeners use lexical information to tune the mapping from auditory to phonemic 
representations (Norris et al., 2003; Kraljic & Samuel, 2005, 2006; McQueen, Cutler, & Norris, 
2006). However, Norris et al. (2003) describe the possibly game-changing insight that one must 
be careful to distinguish between online feedback (as in TRACE) and feedback for learning (as 
in backpropagation). They argue that feedback for learning provides the necessary basis for 
precompiling context-sensitivity into forward connection weights, and suggest that if it turns out 
that online feedback exists, it may only be an epiphenomenon of the need for feedback for 
learning. Mirman, McClelland and Holt (2006b) note that both sorts of feedback are a natural 
consequence of the assumptions of interactive architectures. All the same, this interesting 
distinction may be the key to resolving the debate (Magnuson, 2008a). 

 
4.2. Lexically-mediated phoneme inhibition.  

A recurring theme among criticisms of feedback is that it would cause distorted or 
inaccurate perception at pre-lexical levels. Massaro (1989) argued that lexical feedback distorts 
the representation at the phoneme layer, causing TRACE to fail to fit data from experiments that 
separately manipulate auditory and lexical support for the identity of a phoneme.  However, 
subsequent work showed that if intrinsic variability is implemented, feedback does not distort 
pre-lexical processing (McClelland, 1991), and an extension of this work proved that interactive 
models can implement optimal Bayesian inference for combining uncertain information from 
independent sources (Movellan & McClelland, 2001).   

A related prediction is that if the acoustic input contains a lexically inconsistent phoneme 
(for example, if the /k/ in “arsenic” is replaced with /t/ to make “arsenit”), lexical feedback 
would cause a delay in recognition of the acoustically present phoneme.  Two sets of 
experiments failed to find evidence of lexically-induced delays in phoneme recognition 
(Frauenfelder et al., 1990; Wurm & Samuel, 1997), providing a key motivation for the 
development of the autonomous Merge model (Norris et al., 2000). Mirman et al. (2005) showed 
that these experiments had conflated the manipulation designed to show lexical inhibition effects 
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with the lexical status and neighborhood structure of target items at the point of the lexically 
inconsistent phoneme target. The TRACE model predicted lexical inhibition when these factors 
were controlled, but not under the previously tested conditions, and behavioral tests were 
consistent with these predictions. Thus, lexical feedback can slow phoneme recognition. 

Proponents of the autonomous view have argued that models with lexical feedback would 
“hallucinate” lexically consistent phonemes that were not present in the input (Norris et al., 
2000; Norris & McQueen, 2008). This overstates the potential for hallucination in TRACE (as 
the “trace” preserves details of malformed input, and model behavior differs greatly given well- 
and malformed input; McClelland & Elman, 1986, e.g., Figures 7-11). In addition, the 
“hallucination” claim is typically described as a thought-experiment that falsifies interactive 
feedback, but this underestimates actual human misperception: in lexical inhibition tests 
(Mirman et al., 2005), listeners exhibited a tendency toward lexically-induced misperception and 
this finding is consistent with other contextually-appropriate but illusory perceptions of speech 
such as failures to detect mispronunciations (Cole, 1973; Marslen-Wilson & Welsh, 1978), 
hearing noise-replaced phonemes (“phoneme restoration”: Samuel, 1981; 1996; 1997; Warren, 
1970), and similar findings from other modalities, such as illusory visual contours (Lee & 
Nguyen, 2001). In sum, the pattern of phoneme identification phenomena in the literature, 
including lexically-induced delays and errors, is consistent with direct feedback from lexical to 
pre-lexical processing. 
 
4.3 Lessons from the feedback debate.  

The feedback debate continues with researchers on both sides providing new behavioral and 
computational arguments supporting their view (McClelland et al., 2006; McQueen et al., 2006; 
Mirman et al., 2006a). Nonetheless, the debate illustrates the critical two-way connection 
between model simulations and behavioral data: simulations need to fit the behavioral data and 
make predictions for new behavioral experiments. For this connection to work, simulation 
materials and linking hypotheses need to be matched to behavioral experiment materials and task 
constraints and intuitive model predictions need to be tested with empirical simulations. In 
addition, resolving the debate may require integration with other domains of cognitive science 
(e.g., theoretical neuroscience: Magnuson, 2008a, Friston, 2003) and broader scope analyses 
(e.g., the importance of interactive feedback for learning).  

 5. Crucial questions and directions for progress 
Current computational models of SWR theories require assumptions about the input and output 
and implementations of three core principles: multiple activation, similarity and priors, and 
competition. Progress may require us to reconsider where SWR begins and ends. SWR can be 
construed narrowly, as mapping strings of phonemes onto sound forms associated with words, or 
as broadly as mapping from the acoustic signal to a comprehensive set of phonological, 
grammatical, and semantic characteristics as part of the processes of recognizing larger 
structures like sentences (cf. Dahan & Magnuson, 2006). Whether you adopt a narrow view, 
broad view, or something in between has dramatic implications for your processing theory. The 
conventional view is that adopting the simplifying assumptions of the narrow view allows us to 
break off a tractable piece of the problem. But seemingly minor simplifying assumptions may 
actually complicate things, because they remove potentially constraining information.  

Consider the embedded word problem. Most words are embedded in other words, and/or 
have words embedded within them (depending on dialect, cat, at, a, cattle, law and log are 
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embedded in a phonemic transcription of catalog), suggesting that models of SWR must 
somehow inhibit recognition of embedded words. The problem is much less extreme when one 
considers potential subphonemic cues such as durational differences between short and long 
words. For example, the syllable /haem/ is longer in the word ham than in hamster. Salverda et 
al. (2003) used eye tracking to measure lexical activation and competition and found that 
subjects were exquisitely sensitive to vowel duration differences of only about 15 msecs (see 
Davis et al., 2002, for converging results from priming studies), suggesting such subphonemic 
cues may mitigate (but not obviate) the embedding problem. Thus, while adopting the narrow 
view of SWR may allow traction on significant parts of the problem, it may simultaneously 
complicate the problem by ignoring useful information. The same holds in the opposite direction: 
limiting the scope of SWR to phonological form recognition ignores syntactic, semantic, and 
pragmatic knowledge that could potentially constrain word recognition. Similarly, eschewing 
production constraints, as well as learning and developmental trajectories leaves a more tractable 
problem, but at the peril of missing, for example, ways in which seeming puzzles of adult 
processing might emerge in unanticipated fashion from developmental pressures (MacDonald, 
1999). 

In our view, the greatest potential for progress in modeling SWR is in taking increasingly 
broader views: upstream (by working towards models that operate on raw speech), downstream 
(by connecting the output of current SWR models with higher order linguistic and cognitive 
structures), and developmentally. Current debates, like the feedback debate, have little 
consequence for broad-view models; the differences between models are modest and may 
disappear (or be amplified) as we grapple with greater realism. The model of Plaut and Kello 
(1999), with its realistic inputs, perception-production connections, and developmental approach, 
stands out as a promising example of how the field might proceed towards these goals.  
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Appendix: Modeling tools. 
This table lists tools useful for modeling spoken word recognition. The list is ordered by ease of 
use. Many more tools exist (such as the neural network toolbox for Matlab).  
 

Tool Description and URL 
tlearn Simple yet powerful simulator for feedforward and (simple) recurrent 

networks. No programming experience required. Batch processing possible 
with X11 version or scripting tools. Useful in conjunction with Plunkett & 
Elman (1997) and/or McLeod, Plunkett, & Rolls (1998). 

http://crl.ucsd.edu/innate 

lens 
 
 

Doug Rohde’s “light, efficient neural simulator.” Flexible tool for very 
wide range of neural networks. Graphical user interface. Tcl/tk interface 
makes basic programming skills useful, but not necessary. 

http://tedlab.mit.edu/~dr/Lens 

Emergent 
 
 

Very powerful tool for “parallel distributed processing” modeling, ranging 
from high-level cognitive models to neuronal models. Steep learning 
curve, but incredibly flexible. See O’Reilly and Munakata (2000). 

http://grey.colorado.edu/emergent/index.php/Main_Page 

TRACE jTRACE: Platform-independent reimplementation of the TRACE model in 
Java. Includes graphical user interface, analysis, graphing, scripting, and 
sharing tools. No programming experience required. See Strauss et al. 
(2007):  

http://magnuson.psy.uconn.edu/jtrace 
 
HebbTRACE: Original TRACE code (written in C), revised and 
augmented with Hebbian learning (Mirman et al., 2006b): 

http://magnuson.psy.uconn.edu/mirman/research/HebbTRACE.zip 
 
Mark Pitt provides a version of the original code that he has modified 
slightly and augmented with tools that facilitate simulation and analysis. 

http://lpl.psy.ohio-state.edu/software.html 
ART 

 
 

Mark Pitt provides Matlab code and descriptions of the version of 
ARTPHONE used by Pitt, Myung, and Altieri (2007). 

http://lpl.psy.ohio-state.edu/software.html 
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 Endnotes 
                                            
i   We will stretch “computational model” to mean “formal model:” any formalism that 

describes a mapping. This definition is broad enough to include non-implemented 
descriptions of such a mapping process (verbal-algorithmic), as well as simple mathematical 
models. Note that there is also unfortunate potential for confusion over the common usage of 
"computational model" to refer to this range of approaches, and the most abstract of Marr's 
(1982) levels of information processing theories. A theory at his "computational level" 
describes a computed function in terms of input, output, and constraints on the mapping 
between them, in contrast to theories at the "algorithmic" and "implementational" levels (akin 
roughly to software and hardware, respectively). Mathematical models commonly reside at 
Marr's computational level, while verbal-algorithmic and simulation models commonly 
reside at his algorithmic level.   

ii While PARSYN is consistent with NAM, as we will discuss, NAM’s power is in its 
simplicity and remove from processing details as a choice model. We see PARSYN as 
complementary to NAM rather than a direct extension. While we are using the label 
"mathematical" to distinguish NAM from verbal-algorithmic and simulation models, note 
that this is a weak distinction, as complete mathematical descriptions of processing models 
may or may not be tractable. The key point here is the simplicity of the model, and its 
relation to Marr's (1982) computational level of information processing theories. 

iii   Technically, we are discussing “TRACE II;” TRACE I (Elman & McClelland, 1986) was 
focused on the speech-to-phoneme side of the model, but was never linked to TRACE II.  

iv   Shortlist is often incorrectly described as having a single shortlist, with all items 
inhibiting each other. Instead, there are shortlists aligned at each input position (making the 
potential size of the interactive activation network sl:  s = maximum size of each shortlist, 
which is 30 by default; l = phonemic length of the input). Only items that overlap in time 
inhibit each other. See Figure 3.  

v   Similarly, Scharenborg, Norris, ten Bosch, and McQueen (2005) have proposed using 
automatic speech recognition (ASR) mechanisms for lexical search. As with SRNs, since 
ASR mechanisms themselves predict lexical competition (e.g., via rank ordered hypotheses), 
adding a competition network (Shortlist) to an ASR front-end may just account for 
processing delays, rather than providing a useful function unavailable in the ASR framework.  

vi   This is no small burden when a model has been shown to account for a wide range of 
results. However, tools like jTRACE (Strauss, Harris, & Magnuson, 2007) and others listed 
in the appendix allow one to automate large numbers of simulations in order to explore the 
robustness of previous simulations throughout parameter spaces. 

vii   The best fits used a parameter that changed over time, to reflect greater confidence as 
bottom-up evidence increased. With this parameter (k) set to a constant value of 7, 
competitor fits were reduced slightly. In later work, a constant value of 7 provided excellent 
fits (Dahan, Magnuson, & Tanenhaus, 2001; Dahan, Magnuson, Tanenhaus, & Hogan, 
2001). 

viii   Dahan et al. (2001a, 2001b) extended these linking hypotheses to studies of frequency 
and subcategorical mismatch. The simple assumptions about the role of the visual display 
allow accurate predictions of changes in target fixations depending on whether a competitor 
is present in the display. Norris (2005) suggests that computing response probabilities 
corresponds to predicting that subjects’ eyes instantaneously flit between objects (that is, that 
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each trial must have the same continuous form as the central tendency). However, in choice 
theory, a response probability implies a distribution of responses. Magnuson (2008b) 
provides simulations demonstrating that a 1-parameter stochastic eye movement model 
quickly recovers the underlying distribution. 

ix PSP tools are available from: 
 http://faculty.psy.ohio-state.edu/myung/personal/PSP_PAGE.html. 
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