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Abstract 
 
When individual time series (i.e., trials) have differing durations, the researcher must decide how to 
aggregate data at time points where some trials do not have data. Some researchers argue that since 
there is no data for those trials, they should be excluded. Other researchers include those trials and “fill 
in” or “pad” the data with sensible values. Here we consider the specific case of gaze data from “visual 
world paradigm” studies and use Monte Carlo simulation to generate simplified gaze data to examine 
the consequences of different aggregation approaches. The results provide a concrete demonstration 
that excluding trials with no data is a form of selection bias that systematically distorts results. Unbiased 
data aggregation requires that the “denominator” (i.e., number of trials) remain the same for each time 
point in the analysis. 
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Aggregating fixation data across trials of different durations 
 

In a typical “visual world paradigm” (VWP) eye tracking study of spoken language comprehension, 
participants view an array of images or words on a computer screen, and hear a linguistic stimulus 
relevant to one or more of the elements of the array. The trial-level data are strongly constrained by the 
physical mechanics of the oculomotor system, so these data are aggregated over trials by condition and 
participant (or item) in order to reduce the oculomotor contributions and extract the underlying 
cognitive contributions. One of the most basic and oft-ignored issues in analysis of eye tracking (and 
other time series) data is how to aggregate data across trials of different durations. Typically, a trial ends 
when the participant responds, which naturally leads to some trials that are shorter than others. It is 
hypothetically possible to restrict the analysis to the time window before any trials have terminated, but 
this is generally impractical because the time course of processing usually evolves over a substantially 
longer time window than the single shortest response time. So, when computing fixation proportions at 
later time points, should terminated trials be included or not? Three approaches are currently in use: (1) 
for each time bin, include all trials and count post-response frames as non-object fixations (i.e., the 
participant is done fixating all objects from this trial), (2) include all trials and count post-response 
frames as target fixations (i.e., if the participant selected the correct object, then consider all 
subsequent fixations to be on that object; note that, typically, any trials on which the participant made 
an incorrect response are excluded from analysis), (3) include only trials that are currently on-going and 
ignore any terminated trials since there is no data for those trials. It is important to note that 
researchers rarely even report which of these aggregation methods they used, so a formal survey of the 
literature is not possible. 
 
In the domain of applied regression, the challenges of missing data are well-known, as are various 
approaches for handling them (e.g., Gelman & Hill, 2007, Chapter 25), but regression techniques have 
only recently penetrated into the world of eye tracking and psycholinguistics (e.g., Baayen et al., 2008; 
Barr, 2008; Mirman, Dixon, & Magnuson, 2008). Critically, aggregating data over trials of different 
lengths differs from other cases of missing data that may be more familiar in psycholinguistics. Focusing 
on eye tracking studies, data points may be missing for essentially random reasons such as equipment 
failures, blinks, etc., but these would affect all time points and conditions equally. In contrast, trial 
termination times are intrinsically related to cognitive processing – more difficult trials tend to last 
longer. Thus, the selective elimination of completed trials represents a form of selection bias. To our 
knowledge, the consequences of choosing one aggregation method over another have not been 
examined concretely. There are two points concerning the relative merits of the three methods of data 
aggregation described above. First, the two methods that include all trials are fundamentally the same – 
they will capture the same data and merely depict those data differently, in the same way that 
probability distribution curves and cumulative distribution curves depict the same underlying data in 
somewhat different ways. As we will show, depending on the researcher’s goals, one visualization 
method or the other may be more effective or appropriate. Second, ignoring terminated trials 
represents a form of selection bias that will distort the data. This is because trials do not terminate at 
random, so as the time series progresses through the time window, the data move further and further 
from the complete, unbiased set of trials to a biased subset of only trials that required additional 
processing time. This bias will operate both between conditions (i.e., more trials from a condition with 
difficult stimuli than from a condition with easy stimuli) and within conditions (i.e., more of the trials 
that were difficult than that were easy within a condition). We will demonstrate both of these points 
using Monte Carlo simulation. 
 



LCDL Technical Report 2012.04 Aggregating trials of different durations 
 

3 
 

Methods 
To examine the effect of different aggregation methods, one must know the true pattern of underlying 
data, so we used a Monte Carlo simulation procedure to generate simplified eye tracking data. The 
simulations were designed to model a simple spoken word recognition experiment with two conditions: 
“Easy” and “Hard”, where response times are about 400ms slower in the Hard condition, as might result 
from a manipulation of word frequency, cohort density, or other lexical variables (e.g., Magnuson, 
Dixon, Tanenhaus, & Aslin, 2007). Response times were sampled randomly from the gamma 
distributions shown in the left panel of Figure 1 (shape = 4, scale = 1 for both distributions; to convert 
raw gamma distribution values to the RT range, they were multiplied by 200 and 800 (“Easy”) or 1200 
(“Hard”) was added). For the target fixation analysis, we simulated the simplest case: participants make 
exactly one 500ms fixation on the target just before clicking on it (i.e., there was a target fixation for the 
500ms interval ending with that trial’s RT). This is schematically shown in the right panel of Figure 1 for a 
random subset of 50 trials (25 from each of the two conditions).  

 
Figure 1. Left panel: RT distributions from Monte Carlo simulations of “Easy” and “Hard” conditions. Right panel: 
Time periods of target fixation for a subset of 50 trials (25 from each condition). 
 
For the competitor fixation analysis, 75% of the way through each trial there was a 50% probability of a 
500ms fixation to the “Competitor” (i.e., related) distractor and a 25% probability of a 500ms fixation to 
the “Unrelated” distractor. For each analysis, 50,000 trials were simulated (25,000 for each condition) 
and the results aggregated according to the three different methods described above: (a) consider all 
post-response data as a fixation somewhere other than the critical objects (“non-object fixation”), (b) 
consider all post-response data as target fixation, or (c) consider only on-going trials. Note that for the 
competitor fixation analysis, methods (a) and (b) are equivalent (because the target is, by definition, not 
a competitor object) so they will not be distinguished in the presentation of the results. In VWP 
experiments, researchers typically exclude some trials from analysis (e.g., error responses). For 
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simplicity, we did not exclude any trials from this analysis. The analyses were conducted in R version 
2.13 (R Development Core Team, 2011). 
 
Results 

Target Fixations  
The target fixation time courses 
based on each of the three 
aggregation methods are shown in 
Figure 2. Both of the first two 
methods, which included all trials 
in the analysis, correctly captured 
the approximately 400ms 
difference between the Easy and 
Hard conditions that was in the RT 
data. As mentioned above, these 
methods reflect the same 
underlying data but depict them 
somewhat differently. Researchers 
can choose the visualization 
method that best fits their goals. 
For example, considering post-
response data as non-object 
fixations produces target fixation 
proportion curves that most closely 
mimic the RT distributions 
(compare Figure 2 and Figure 1) 
and the differences between the 
conditions were slightly more 
visible in the 2000-2500ms time 
range; on the other hand, 
considering post-response data as 
target fixations produces curves 
that more intuitively map on to 
activation curves from 
computational models such as 
TRACE (McClelland & Elman, 1986), 
which is important for many VWP 
studies of spoken word recognition (e.g., Allopenna et al., 1998; Dahan, Magnuson, & Tanenhaus, 2001; 
Mirman et al., 2008).  
 
The third method, which considered only on-going trials, mostly followed the same pattern, but the data 
became noisy and inconsistent in the later portion of the time window, in this example, after about 
2000ms. There are two effects contributing to this. First, the reliability of any estimate (i.e., fixation 
probability) decreases as the sample size (i.e., number of trials) decreases. However, that this was not 
just restricted to the “tail” of the data: about 20% of the response times were greater than 2000ms. This 
would be a rather large amount of data to exclude; nevertheless, one might imagine that truncating the 
data at that point would avoid this problem. However, this brings up the second contributing effect: 

Figure 2. Target fixation time course based on three different 
aggregation methods. 
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these late data are not evenly distributed across the two conditions. About 25% of the Hard condition 
response times were greater than 2000ms, but only 15% of the Easy condition response times were 
greater than 2000ms. That is, considering only on-going trials creates a Catch-22: the late data 
potentially reflect interesting condition differences (e.g., one condition harder than another), but the 
late data are noisy and potentially contain spurious effects (e.g., the visually striking, but completely 
spurious, re-emergence of the Easy vs. Hard condition effect around 3000ms in Figure 2). In contrast, 
the two methods that consider all trials, smoothly reflect the progressive disappearance of differences 
between conditions (and the effects near the asymptotes may be more visible on a logit scale: Barr, 
2008; Jaeger, 2008). 
 
The distorting effect of considering only ongoing trials is even more striking if the difference between 
the “Easy” and “Hard” conditions is reflected in the skew of the RT distribution rather than a simple 
400ms shift (e.g., Balota & Spieler, 1999; Balota, Yap, Cortese, & Watson, 2008). This is depicted in 
Figure 3, where the difference between the “Easy” and “Hard” conditions was in the shape parameter (4 
vs. 6; as in the previous simulation, the raw gamma distribution values were multiplied by 200 and 800 
was added for both conditions, so the difference in the shape parameter produced an approximately 
400ms difference in mean RT between conditions). In this case, considering post-response data as target 
fixations accurately captured the processing speed difference between conditions, but considering only 
on-going trials caused it to look more like an asymptote level difference (i.e., for the red curves in Figure 
3, target fixations in the “Hard” condition appear to reach a lower asymptote level than in the “Easy” 
condition). This demonstrates that reported asymptote differences based on considering only on-going 
trials (e.g., McMurray, Samuelson, Lee, & Tomblin, 2010) need to be interpreted with caution. 

 
Figure 3. Left panel: RT distributions from Monte Carlo simulations of “Easy” and “Hard” conditions based on 
differences in the shape parameter. Right panel: Target fixation time course based on including only on-going trials 
(red) and considering post-response data as target fixations (blue). 
 
Competitor Fixations  
For analysis of competitor fixations, considering only on-going trials similarly led to distortion in the later 
time windows (Figure 4). When post-response data were considered as non-object (or, equally, target) 
fixations, the resulting competition effect was approximately symmetric (i.e., the rise and fall of the solid 
line in bottom panel of Figure 4 is approximately symmetric), reflecting the approximately symmetric 
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underlying procedure that produced the fixation data. In contrast, considering only on-going trials 
produced the appearance of a strongly asymmetric competition effect that persisted at an 
approximately stable level from 2500ms to 3500ms. Since we defined the algorithm that produced the 
data, we know that there was no late competition effect: fixations for both the related and unrelated 
competitor were tied to trial response times with a constant greater probability of fixating the related 
competitor than the unrelated competitor. Thus, the appearance that fixation of related competitors 
persisted longer than fixation of unrelated competitors is completely spurious. 

 
As mentioned above, this spurious effect is due to biased sampling, not merely to noisier estimation due 
to a smaller number of data points. To demonstrate this concretely and to examine how this affects 
analysis of real visual world paradigm eye tracking data, we considered data from the taxonomic 
competition condition from a recent study (i.e., more looks to a member of the same semantic category 
than to unrelated objects; Mirman & Graziano, 2012). To simulate random data loss, we removed a 
random sample of 10% and 20% of the data points. Figure 5 shows the competition effect size based on 
the two aggregation methods for each of the three data sets (complete data, 90% of data points, and 
80% of data points). Considering only on-going trials produced the appearance of a more persistent 
competition effect whereas random data loss had virtually no effect on the competition effect size. 
Thus, considering only on-going trials produces the appearance of an overly persistent competition 

Figure 4. Top: Competitor 
fixation time course based 
on two different 
aggregation methods. 
Bottom: Competition effect 
size (Comp. – Unrel.) based 
on the two different 
aggregation methods. 
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effect and this is intrinsic to the aggregation method, not due to simply having a smaller number of data 
points. 

 
Figure 5. Effects of moderate data loss and different aggregation methods on taxonomic competition effect sizes 
(error bars represent ±SE). 
 
Discussion 
We used Monte Carlo simulation to examine the consequences of different methods of aggregating data 
across time series (i.e., trials) of different durations. This issue is particularly important for studies -- 
such as typical “visual world paradigm” (VWP) experiments -- in which trial durations are determined by 
the participant (e.g., the trial ends when the participant makes a response) and thus typically have 
different durations. Using Monte Carlo simulation to generate pseudo-VWP fixation data allowed us to 
precisely determine the underlying data and effects so that we could identify distortions due to 
aggregation methods. Additional analyses of real VWP data demonstrated that the observed patterns 
hold for real data, not just simulated data with particular parameters. We considered three approaches 
to dealing with data from terminated trials: (1) treat all post-response data as a fixation somewhere 
other than the critical objects (“non-object fixation”), (2) consider all post-response data as target 
fixation, or (3) consider only on-going trials. The simulations illustrated that there are no substantive 
differences between the first two methods because they are equivalent for competitor fixation analyses 
and are merely different depictions of the same underlying data for target fixations (probability 
distribution functions vs. cumulative distribution functions). In contrast, considering only on-going trials 
caused distortions at later time points because terminated trials were being selectively removed from 
analysis. Direct comparisons with random data loss demonstrated that it is indeed a selection bias and 
not merely noisier estimation due to fewer data points. 

 
Since slow response times are typically causally related to competition (i.e., competition slows down 
responses) or other processing difficulty, distortion in the late time window can have serious theoretical 
consequences. To understand why this is the case, imagine that we want to evaluate the response rate 
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over time to a drug for a deadly disease. We enroll 100 participants in the trial and administer the drug. 
At first, only 50% of the participants respond to the drug. As the trial progresses, the non-responders 
begin to, unfortunately, die. After 6 months, only 75 participants are alive and participating in the trial 
and the same 50 are responding to the treatment. At this point, is the response rate the same 50% or 
has it risen to 67%? Would it be accurate to conclude that responsiveness to the treatment increases 
after 6 months? This example, hopefully, makes it intuitively clear why considering only on-going trials is 
a form of selection bias that will systematically distort the results. In other words, unbiased data 
aggregation requires that the denominator of the proportion calculation remain the same over the full 
time course. 
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