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Abstract

The complex-systems approach to cognitive science seeks to move beyond the formalism of infor-

mation exchange and to situate cognition within the broader formalism of energy flow. Changes in

cognitive performance exhibit a fractal (i.e., power-law) relationship between size and time scale.

These fractal fluctuations reflect the flow of energy at all scales governing cognition. Information

transfer, as traditionally understood in the cognitive sciences, may be a subset of this multiscale

energy flow. The cognitive system exhibits not just a single power-law relationship between fluctua-

tion size and time scale but actually exhibits many power-law relationships, whether over time or

space. This change in fractal scaling, that is, multifractality, provides new insights into changes in

energy flow through the cognitive system. We survey recent findings demonstrating the role of multi-

fractality in (a) understanding atypical developmental outcomes, and (b) predicting cognitive change.

We propose that multifractality provides insights into energy flows driving the emergence of cogni-

tive structure.
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1. Introduction

Recent evidence suggests that cognition is characterized by seamless interactions among

multiple scales of organization (e.g., chemical, physiological, and environmental). These
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interactions support richly flexible and context-dependent behavior, as well as the highly

structured and stable phenomena that are typically the focus of cognitive science, such as

memory, categories, and the like. A fundamental challenge for cognitive science is to

develop a formalism allowing us to understand how the broad spectrum of cognitive

phenomena emerge from multiscale organization. In this article, we propose that the

methods of fractal scaling provide a ready candidate formalism. More important, physical

phenomena displaying fractal scaling provide a viable bridge between behavioral phenom-

ena and the energy flow within the cognitive system (Stephen, Boncoddo, Magnuson, &

Dixon, 2009).

We begin by addressing a foundational issue regarding the architecture of cognition:

Does cognition arise from the activity of insular components or the multiplicative interac-

tions among many nested structures? Evidence from a wide range of domains suggests that

interactions dominate cognition, raising important questions about the viability of

approaches employing additive decomposition. Next, we survey how a central measure of

interactivity, the power-law exponent, has been fruitfully employed in two different areas of

research: atypical developmental populations and emergence of new cognitive structure.

Research comparing typically and atypically developing children across a variety of tasks

has revealed qualitative differences in interactivity. We then introduce recent findings in

which changes in the power-law exponent presage the emergence of new cognitive struc-

ture. Finally, we outline how changes in fractal scaling motivate a more general, multifractal

approach that may quantify the energy flow across the multiscale structures supporting cog-

nitive performance. Our discussion focuses on conceptual topics; technical details are avail-

able in the original articles. Given the constraints of this forum, our survey of the literature

is necessarily selective, rather than comprehensive.

2. Power-law relationships throughout the cognitive system

Cognitive performance reveals an interesting mix of stability and instability. For exam-

ple, cognitive structures, such as those involved in memory and categorization, are conven-

tionally defined by their temporal stability. However, sufficiently detailed measurements

show that cognitive performance fluctuates, from memory retrieval and reaction times to

syllable durations, acoustical power of vocalizations, and movements of hand and eye. At

first glance, these fluctuations may appear uninteresting or even bothersome. Indeed, con-

ventional treatments of cognition assumed that these fluctuations are akin to measurement

error. Equating intrinsic fluctuations and measurement error allowed for the adoption of

standard linear statistical models. By employing these models, scientists assume that fluctu-

ations in cognitive performance (i.e., variances) are additive, unsystematic white noise (e.g.,

uncorrelated and normally distributed). Componential theories of cognition go hand in hand

with statistical models assuming additive white noise (Sternberg, 2001; Wagenmakers, Far-

rell, & Ratcliff, 2004). In these well-known treatments of cognition, the internal functioning

of each component is insulated from the rest of the system. Each component takes inputs

from other components, but its internal operation is not affected by their states. Functionally
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independent components make an additive approach to modeling viable. At minimum,

componential treatments of cognition require additive, unsystematic fluctuations.

Recent research (Gilden, 2001; Van Orden, Holden, & Turvey, 2003; Stephen, Dixon, &

Isenhower, 2009) shows that fluctuations in behavior have a much more complex structure

than cognitive scientists have typically recognized. Rather than exemplifying additive white

noise, fluctuations in cognitive performance are often closer to ‘‘pink’’ noise. Whereas

white noise reflects equally sized fluctuations at all time scales, pink noise consists of a frac-

tal decay of fluctuation size with scale: systematically larger fluctuations at longer time

scales and smaller fluctuations at shorter time scales. That is, the larger changes in cognitive

performance unfold gradually over the longer time scales while cognitive performance at

shorter time scales is more stable, and a power law relates fluctuation size to time scale,

meaning that the size of change in cognitive performance is proportional to time scale raised

to a scale-invariant exponent. Fig. 1 depicts a power-law relationship and illustrates the

scale-invariant form of power-law distributed dynamics.

Evidence for fractal scaling is extensive. Pink noise appears in a wide variety of standard

cognitive tasks measuring response times, such as simple reaction time, word naming, and

lexical decision (e.g., Gilden, 2001; Van Orden et al., 2003). Similarly, judgment tasks,

involving temporal and spatial estimation tasks yield pink noise (e.g., Wagenmakers et al.,

2004). Explicit daily judgments of self-esteem and implicit measures of racial bias also yield

pink noise (Corell, 2008; Delignières, Fortes, & Ninot, 2004). Pink noise is manifest in

many repetitive biological and motor functions, such as tapping in synchrony or syncopation

with a metronome, interstride intervals in gait, and interbeat intervals of heartbeats (Chen,

Ding, & Kelso, 2001; Hausdorff et al., 1997).

Fractal scaling can vary widely. Empirically obtained power-law exponents rarely reflect

pink noise (i.e., exponent = 1), and systematic changes in the power-law exponent have the-

oretically important implications for how performance changes. For example, across a broad

Fig. 1. Power-law relationships depicted on standard (left panel) and logarithmic (right panel) axes. The left

panel shows the nonlinear increase in fluctuation size for larger time scales. The right panel shows the scale-

invariant property of power laws, that is, that fluctuations increase by the same multiplicative factor across all

available ranges of time scales.
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range of self-organizing phenomena, the power-law exponent increases to a critical value as

a system approaches a phase transition (e.g., Bonamy, Ponson, Prades, Bouchaud, & Guillot,

2006; Heinrich, Levental, Gelman, Janmey, & Baumgart, 2008; Sengers & Shanks, 2009).

Thus, a considerable body of work spanning various disciplines (e.g., chemistry, physics,

and geosciences) has investigated changes in power-law relationships. For example, inject-

ing unpredictability into a task can weaken pink-noise signals, that is, weaken the relation-

ship between fluctuation size and time scale so that it more closely resembles evidence of

additive white noise (Holden, Choi, Amazeen, & Van Orden, in press). This ‘‘whitening’’

of a pink-noise signal may reflect weakened interactivity between the cognitive system and

the task environment. Comparable examples of changes in power-law relationships can be

found in physiological development over the longer term. For instance, pink noise in the

timing of strides in gait will whiten with age and with the development of neurological dis-

orders such as Huntington’s disorder (e.g., Hausdorff et al., 1997; Van Orden, Kloos, &

Wallot, 2009).

Power-law distributions in response times reveal crucial aspects of cognitive architecture

(Rhodes & Turvey, 2007; Moscoso del Prado, unpublished data). Assumptions underpinning

conventional approaches, specifically that cognitive architectures comprise functionally

independent components (e.g., Sternberg, 1969, 2001), do not predict power-law distribu-

tions. Whereas normal distributions reflect variability produced by summing together contri-

butions from independent sources, power-law distributions arise naturally in the context of

highly interactive, interdependent systems (Bak, 1996; Jensen, 1998). Thus, power-law dis-

tributed response times suggest that interactivity and interdependence are inherent proper-

ties of cognitive performance (Holden, Van Orden, & Turvey, 2009). Next, we consider

how changes in power-law relationships provide a valuable window on cognition. Specifi-

cally, we first discuss how differences in power-law relationships may inform our under-

standing of atypical cognitive outcomes. We then illustrate how over-time changes in the

power-law exponent predict a cognitive transition, from one representation of a problem to

another.

3. Changes in power-law distributions: Interactivity in neuropsychology

Component-dominant perspectives remain at the core of most modern neuropsychology.

This is most clear in the logic of dissociations: When an individual’s performance on task A
is impaired, but performance on task B is not, this is taken as evidence that the component

responsible for performance of task A is impaired. This approach is not without critics (e.g.,

Van Orden, Pennington, & Stone, 2001) and there is a rich philosophical literature on its

strengths and weaknesses (e.g., Caramazza, 1986; Dunn & Kirsner, 2003); however, for

present purposes the critical issue is that dissociations are framed in terms of functionally

independent components.

For example, patients exhibiting difficulty naming common objects from pictures have

been divided into two groups: those with impaired semantic knowledge and those with

impaired access to semantic knowledge (e.g., Jefferies & Lambon Ralph, 2006; Warrington
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& Cipolotti, 1996). On this interpretation, there is a ‘‘semantic knowledge’’ component and

a ‘‘semantic access’’ component that can be damaged separately. Another key example is

the dissociation between surface dyslexic patients, who can correctly read nonwords (e.g.,

‘‘bint’’) but are impaired on reading exception words (e.g., ‘‘pint,’’ incorrectly regularized

to rhyme with ‘‘mint’’), and deep dyslexic patients who show the opposite pattern of impair-

ment (impaired reading of nonwords and somewhat spared ability to read exception words).

Notwithstanding an active debate on the interpretation of these data, the two primary

accounts both explain the dissociation in terms of a division of labor between phonological

and lexical-semantic components.

Accounts based on differences in processing dynamics begin to suggest interaction-

dominant alternatives to component-based accounts of deficits. For example, Gotts and

Plaut (2002) used computational model simulations to show that subtle changes in

system-wide processing dynamics could produce the behavioral pattern associated with

impairment of semantic access. Similarly, Kello and colleagues (Kello & Plaut, 2003;

Kello, Sibley, & Plaut, 2005) showed that manipulation of a single parameter of

processing dynamics can produce the double dissociation between surface and deep

dyslexia.

Some disorders have a more varied set of symptoms, making componential accounts

somewhat more difficult. For example, children with autism spectrum disorders (ASD) exhi-

bit impairments or abnormalities at all levels of cognitive function: from perception and

action, to language and communication, to social interaction. In addition, deficits in any one

component may be able to account for the full range of symptoms. For example, a low-level

perceptual bias in favor of local features over global shape processing (e.g., Behrmann,

Thomas, & Humphreys, 2006) would predict an impairment of face processing, which could

produce an impairment of social interaction and related communication deficits. On the

other hand, an impairment of orienting to socially relevant stimuli (e.g., Dawson, Meltzoff,

Osterling, Rinaldi, & Brown, 1998) would also predict impaired processing of faces as well

as deficits in joint attention and consequent deficits in perceptual development, possibly

including general deficits in global shape processing.

Under a component-dominant view of cognition, individual differences should be limited

to specific cogs in the cognitive machine. In contrast, an interaction-dominant view of cog-

nition predicts that individual differences should be detectable at all scales of behavior. For

example, the dynamics of eye movements should reflect individual differences. Consistent

with an interaction-dominant view, the distributions of gaze steps (Euclidean distances

between consecutive gaze positions) in language comprehension and visual cognition tasks

are best fit by power-law-like distributions (Stephen, Mirman, Magnuson, & Dixon, 2009;

Stephen & Mirman, 2010).

Further, task-specific differences in the shape of gaze-step distributions suggest that look-

ing behavior reflects self-organization of the cognitive system in response to task constraints

(see also Aks & Sprott, 2003). Differences in the shape of gaze-step distributions also reflect

developmental differences. Specifically, in audio-visual speech perception tasks, typically

and atypically developing children exhibit eye movements following different kinds of

power-law-like distributions. Compared to younger children and children with ASD, older
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children and typically developing children tended to exhibit distributions of eye movements

that more closely resembled a lognormal distribution (Mirman, Irwin, & Stephen, in press).

A lognormal distribution is a power-law-like distribution reflecting the multiplicative inter-

action of independent components (see Holden et al., 2009). It preserves the same interactiv-

ity found in pure power-law distributions while reflecting the consolidation of system

dynamics into a more stable structure. This difference in eye movements predicted ASD

diagnosis beyond standard cognitive and linguistic diagnostic tests and simple measures of

eye-movement size. These results suggest that the scale-invariant dynamics of cognition dif-

fer across typical versus atypical developmental trajectories, even down to the fine details of

eye movements.

Adopting this view requires a shift in thinking about individual differences and neuropsy-

chological conditions. Rather than reflecting differences or deficits in specific components,

the behavioral differences reflect differences in system-wide dynamical properties. Such a

shift in perspective may help resolve controversies regarding impaired components by refra-

ming the issue in interactive terms. In addition, this approach may allow early detection of

neuropsychological conditions through simple noninvasive procedures, such as eye tracking.

This is particularly important for developmental disorders (e.g., autism) because early diag-

nosis can lead to substantially better outcomes.

Historically, efforts to understand individual differences have adopted a strictly compo-

nent-dominant view, making this field a particularly fertile ground for new insights moti-

vated by adopting an interaction-dominant view on cognitive performance. Work seeking to

uncover the systemic, dynamical underpinnings of cognitive deficits can serve as new tests

of interaction-dominant views of cognition and may suggest novel methods of diagnosis and

rehabilitation.

4. Changes in power-law relationships presage emergence of new structure

Recent work has addressed the emergence of novel cognitive structure from the perspec-

tive of interaction-dominant, self-organizing systems using a simple problem-solving task

as a test bed (Dixon, Stephen, Boncoddo, & Anastas, 2010; Stephen & Dixon, 2009;

Stephen, Dixon, & Isenhower, 2009; Stephen, Boncoddo, et al., 2009). In this task, a set of

gear-system problems is presented one at a time. Each gear system consists of a sequence of

coplanar, interlocking gears (see Fig. 2) presented in a static display. The turning direction

of the first gear is specified by an arrow on its face. The participant is asked to determine the

turning direction of the final gear. Across a wide age range, participants usually start solving

gear-system problems by manually simulating the rotation of each gear and the transfer of

force between adjacent gears. Typically, this force-tracing strategy holds for several trials

until, abruptly, in an ‘‘aha!’’ moment, the participant discovers that the interlocking gears

form an alternating sequence (e.g., ‘‘clockwise,’’ ‘‘counterclockwise’’) and use that prop-

erty to solve the problem. The sudden, spontaneous discovery of a new relationship, alterna-

tion, marks the emergence of a new cognitive structure, by all conventional accounts, a new

representation of the problem (Dixon & Bangert, 2002).
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If interactions dominate the cognitive system, then the emergence of a new cognitive

structure should have the properties of a phase transition, a sudden qualitative change in the

organization of the system that arises from a critical instability, the breaking and reforming

of componential constraints on the system. This temporary weakening of componential con-

straints occasions a concomitant temporary strengthening of interactions, marked by peak

and subsequent drop in the power-law exponent (relating fluctuations to time scales; e.g.,

Grebogi, Ott, Romeiras, & Yorke, 1987). To test the hypothesis that the discovery of this

new cognitive structure was a phase transition, we needed very fine-grained data on perfor-

mance during the task. We therefore asked participants to wear a motion-tracking device on

their dominant hand while they were solving the gear-system problems. For each trial, the

time series of angular velocities was calculated. The angular velocity time series were in the

range of pink noise. More important, participants who discovered alternation showed a

peak and subsequent drop in their power-law exponents just prior to discovery. Participants

Fig. 2. Examples of gear-system problems, varied on dimensions of size (small systems with 4–5 gears or large

systems with 7–8 gears), number of pathways (1 or 2), and presence or absence of an extraneous gear.
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who did not discover alternation showed no significant change in their power-law expo-

nents. In subsequent work, Stephen, Boncoddo, et al. (2009) extended these findings using a

time series derived from eye tracking rather than hand movements. They found that a peak

and subsequent drop in the power-law exponent anticipated discovery of the new representa-

tion. Regardless of whether the time series was obtained from the hand or the eyes, the tran-

sition to a new cognitive structure was predicted by a peak and subsequent drop in the

power-law exponent.

Structures called ‘‘representations’’ may more accurately be described as functional orga-

nizations of the cognitive system. Functional organizations are not committed to specific

components. In the gear task, hand or eye may both serve to attune the cognitive system to

the energy gradients entailed by the task environment, and fluctuations in each exhibit

the same pattern of power-law exponents. This organization is not reducible to anatomical

components but rather functional relationships occasioned by energy flow (e.g., Kugler &

Turvey, 1987).

5. Multifractality as a formalism for the energy flows underlying information

In a component-dominant system, a change in behavior can be straightforwardly attrib-

uted to a particular source. The individual components form a causal chain, so identifying

which component or set of components is responsible for change simply requires analyzing

the causal connections in the chain. Explaining stability in such systems is not typically an

issue because the components are implicitly assumed to have temporal stability. Since the

output of one component is an input to the next component in the chain, it often makes sense

to address these between-component transactions as information exchange.

In an interaction-dominant system, changes in behavior have a very different source,

because in such a system behavior is the result of transactions among very many compo-

nents. The flow of energy across a complex web that constitutes the components gives rise

to behavior. These components are not arranged in a causal chain, nor do they function inde-

pendently of one another. The minimal crucial difference between component-dominant and

interaction-dominant systems is that in an interaction-dominant system the internal function-

ing of each component is dependent on the functioning of other components. Behavior in an

interaction-dominant system is a macroscopic phenomenon emerging from the interactions

among all the components. Given that behavior is softly and temporarily assembled in inter-

action-dominant systems, stability is a phenomenon of interest, just as change is. Indeed,

they are governed by the same principles (Shinbrot & Muzzio, 2001). Put simply, behavior

is just too flexible, adaptive, and context sensitive to be plausibly driven by a formalism

rooted in the physical mechanics of strictly linear Newtonian systems (Van Orden et al.,

2003; Stephen, Boncoddo, et al., 2009). Whereas Newtonian systems are built of smooth

Euclidean components, fractal systems are rife with multiscale imperfections (i.e., fluctua-

tions) that can radically change outcomes (Stewart & Golubitsky, 2001). By definition,

emergent behavior does not reduce to the sum of behavior of the component processes

composing the system (Van Orden, Holden, & Turvey, 2005). Because the collective
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interactions across the components give rise to emergent behavior, as opposed to the activity

of any one component, the notion of information exchange is poorly suited to interaction-

dominant systems.

Because information exchange is not a sensible metaphor for interaction-dominant

systems, we pursue a formalism in terms of energy. At first glance, this may appear to

be a radical departure, but note that information exchange in the cognitive system must

be a generically physical (and hence energy-consuming) set of events (unless one wishes

to accept dualism; e.g., Descartes, [1641 ⁄ 1998]). Thus, addressing cognition in terms of

the energy flow is a broader, more general approach, one that will include activity typi-

cally considered to be information exchange. In what follows, we explain how fractal

scaling connects cognition seamlessly with the flow of energy and matter across the sys-

tem. We then locate changes in fractal dimension within the broader formalism of mul-

tifractality.

Power-law relationships represent a special case of diffusion. Diffusion is the move-

ment of physical material in a medium. Importantly, diffusion only occurs when there

is a gradient of energy or matter within the medium. Traditionally, models of diffu-

sion have begun at the level of the motion of a single particle. This motion is quanti-

fied in terms of the mean squared distance (MSD) covered by the particle as a

function of time. In ordinary Newtonian models of diffusion, average squared distance

increases as a linear function of time. Power-law relationships emerge when MSD

increases faster than a linear function of time (time to the power of 1) but not faster

than a quadratic function of time (time to the power of 2). Because of the fractional
exponent on time, between the whole numbers 1 and 2 is often called fractal diffu-

sion (Scafetta & Grigolini, 2002; Shlesinger, Zaslavsky, & Klafter, 1993). Fractal

diffusion (i.e., diffusion in the power-law range) occurs in complex physical media in

which the gradients of energy and matter are heterogeneous.

What does diffusion have to do with cognition and behavior? Cognition, because it

involves the activity of physical components, must consume energy. Energy consumption

will change the local gradients of energy and matter, and therefore the speed at which

energy flows through the system, that is, the rate of diffusion. Thus, the activity that entails

cognition must change the rate of diffusion in the complex physical materials in which it

occurs. Whereas the classic diffusion model of response time (e.g., Ratcliff, 1978) dealt with

modeling accrual of evidence in a component-dominant cognitive architecture, the present

discussion recommends empirical estimation of diffusion rates as a means to predict cogni-

tive outcomes.

Regardless of whether we view behavior as intrinsically meshed with cognition

(e.g., Kaschak et al., 2005) or just tightly time-locked to cognition (e.g., Magnuson, Tanen-

haus, Aslin, & Dahan, 2003), it follows that fine-grained measurements of behavior carry

information about the diffusion rates of the structures generating it. The fluctuations empha-

sized above are the source of this information about diffusion rates. Fluctuations in macro-

scopic behavior are the aggregated, gradient-dependent movements of material across many

scales of the cognitive system that support the behavior. The power-law exponent relating

the magnitude of fluctuations to the time scale quantifies the rate of diffusion.
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In very complex material, such as biological tissue, diffusion is likely to occur at different

rates across different scales. Here, a single power-law exponent will not suffice to describe

energy flow through the system. Rather, we need a range of power-law exponents to

describe the spectrum local rates of energy flow within the system (e.g., Aranda, Salgado, &

Munoz-Diosdado, 2006). Whereas diffusion depending on a single fractional exponent relat-

ing MSD to time is fractal, diffusion that depends on multiple fractional exponents relating

MSD to time is multiply fractal, or more simply termed multifractal (Shlesinger et al.,

1993).

Multifractal diffusion expresses energy flow across a much broader range than what

cognitive science has traditionally taken as the scope of information transfer. Informa-

tion transfer may only address a subset of the energy flow that the cognitive system

uses to organize to its environment. In short, no fluctuation may be too small or too

large to exert a meaningful effect on cognitive performance. Recent work has demon-

strated that aspects of cognitive performance are indeed multifractal (Ihlen & Vereij-

ken, 2010; Stephen & Dixon, 2011). For example, Stephen and Dixon asked

participants to tap in synchrony with an unpredictable (i.e., chaotic) metronome. They

showed that the intertap intervals participants generated were multifractal, exhibiting a

spectrum of fractal scaling exponents within the same intertap interval time series.

The multifractal spectra of these intertap intervals closely matched the multifractal

spectra of the corresponding metronome’s interonset intervals. These results provide

an initial demonstration that a complex behavior (synchronizing to an unpredictable

signal) may emerge from the multifractal dynamics characterizing both the cognitive

system and its environment.

Fluctuations have traditionally received rather short shrift in cognitive science. However,

under a complex-systems perspective, we begin to see that fluctuations characterize the state

of an entire cognitive system at very many scales and that the structure of these multiscale

fluctuations is centrally relevant to the development of the cognitive system. When we

examine the statistical structure of these multiscale fluctuations, it becomes possible to trace

out the complex interplay of forces and flows that push and pull the cognitive system as it

takes on new structure. In this light, the cognitive system shows itself to be a physical sys-

tem built of components that interact similarly at very many scales. Such systems are neces-

sarily structured by the power-law structured flow of energy, indicating nonlinearly fast

diffusion. We propose that it is possible to understand and predict the development of such

systems by empirically estimating the changes in power-law structure of the system behav-

ior. The multifractal dynamics of the fluctuations in the cognitive system provide complex-

systems approaches to cognitive science with new leverage on solving the problem of how a

cognitive system evolves.
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